DISKETTE DATA
ENTRY SYSTEM
DF11SYS

User’'s Guide

Version 2
March, 1976

Model Code No. 50135

DATAPOINT CORPORATION

D

The Leader in |
Dispersed Data Processing

PREFACE

DF11 provides a personalized data entry system for use on any
DATAPOINT processor and diskette. DF1l1l is intended primarily to
support generation of data entry systems on diskette. DF11

contains more features and greater capabilities than DATAFORM 2

contained.

Forms" are created for display on the processor’s screen,
and the uata entry operator then simply fills in the form. The
data is then recordeu, and at any time may be retrieved and

revised using the same form to view and edit the recorded data.

Each "form" is custom designed, and editing criteria are
assigned to the data fields on the férm at the time the form is
generated. Proygyrams written in‘the'high level DF11l language may
also be assigned at this time. Forms and programs are then

compbined and become a unique DF11l system.

Threevstages of development are in§OlVed in generating a
system: the euitor and compiler are uéed to create field programs;
the form generator is used to create forms; and the data entry
‘interpreter 1s used to control data entry. Additionally., the print

utility provides a hard copy listing of the data tile, ftorm

images, or both

Since DF11l uses standardized data record formats, further
processing of the data can proceed under any‘DATABUS, BASIC, or
RPG program. Additionally,’any one of a number of available
communications programs or terminal emulators (includihg DATAPOLL
"and EM2780) may be used to transmit DF11 data files for further

processing at remote sites.

Chapter 1 should provide as much information about DF11l as is
necessary for those familiar with both the cassette version of
DATAFORM and DOS. Chapter 2 provides a more generalbdescription of
DF11, and continuing chapters describe forms generation and data
entry using the forms. The DOS Gser's Guide, model number 50127,

provides more information about the DOS.

ii

Throughout this manual, a field appearing between pointed

brackets, as:
<filenameé>

‘denotes a required field; whereas, a field appearing between

square brackets, as:
[,filenamel

denotes an optional field, whose use is explained in subsequent

dlLscussion.

| Version 2 of DF1l contains the following‘changes from'version
1 of DFL1: | |

i) The execution of the CLOSE statement’has éhanQed.

2) The S type edit criteria has been added to suppfess
‘shift key inversion.

3) The'interpreter's START command displaysbthe'name
of the data file.

4) The default data file ekfension is TXT.

%) Keyin over-run is prevented-

b) Data ftile OVERFLOW action has changed.

7) DF1l interpreter now uses only 251 characters. in a

iii

disk séctor, rather than 253. This means that the
version 1 interpreter must be used with version 1
data files; and the versioﬁ 2 interpretef must be
used with version 2 data files.

) The HELP command is no longer in the form

generator.
To convert DF1l version 1 systems to DF11 version 2 systems,

each field program should be re-compiled, and each form should be

re-generated.

iv

1.

[SSIE SE 1N YOI V)

TABLE OF CONTENTS .

A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM
1.1 Installing the Diskette DATAFORM System
1.2 System Hames
1.3 Program Generation
1.3.1 Program Source File Creation
1.3.2 Program Compilation ‘

.4 Form Generation

.5 Form Testing and Data Entry
6 Using DF11 with CHAIN

7 DF11 Compatibility

GENERAL DATAFORM TERMS AND CONCEPTS
.1 What is a FORM?

.2 What is a FIELD PROGRAM?)

.3 User Space and How It’s Allocated
-4 Some Data kntry Features

THiE FORM GENERATOR
3.1 Data Field
3.2 Keyin Only Field
3.3 User Space
3.4 Form Worksheet
3.5 The NEW Command

3.5.1 Repeat Key (KEYBOARD)

3.5.2 Cursor Movement Function Keys (2,4,6,8)

3.5.3 Character Insert Function Key (7)

3.5.4 Character Remove Function Key (0)

3.5.5 Erase Function Keys (1,.,9)

3.5.6 Line Insert Function Key (3)

3.5.7 Duplicate Character Function Key (5)

3.5.8 Return to Monitor Function Key (CANCEL)
3.6 Assignment of Edit Crlterla

3 6.1 The TYPE Pass

Numeric Minus-overpunch (0O)
Shift Key Inversion (S) '
3.6.2 The REQUIRE Pass

3.6.2.1 Required (R)

3.6.2.2 Fill Controlled (F)

3.6.2.3 Required and Fill Controlled (B)

S
3.
3.
3.
3.
3.
3.

6.1.1 Alphabetic (A)
6. 2 Digit (D)
6.1.3 Numeric (N)

6 - 4 Mixed (M)

6. 5

6. [§)

L.
1.
1.
1.
1.
1.
I

 WLWWwiwwwwwuwLLLWLWLWWLWWLWWWL
!

e

N L)
| 11 Q
U WNNNRFRFPPPOD

|

robo NN N
1
NSy

| IR S U NN N R EUN N I |

I S T SRS N B |

1

WWwwww
1
Py
oo

i
—
—

3.
3.
J

4.

[S

4

7
8

3.6.2.4 Program Reserved (P)
3.6.2.5 Required and Program Reserved (S)
3.6.2.6 Keyin Continuous (K)
3.6.2.7 Required and Keyin Contlnuous (X)
.6.3 The JUSTIFY Pass
3.6.3.1 Right Justify (J)
3.6.3.2 Zero Fill (2)
3.6.3.3 Right Justify and Zero Fill (R)
.6.4 The SEMI-CONSTANT and CONSTANT Passes
-6.5 The PROGRAM Pass
6.6 The LINK, K Pass
3.6 .6 1 Setting a Manual Link
3.6.6.2 Setting an Auto Link
3.6.6.3 Clearing a Link
The OUT Command ;
The REVISE Command

9 The OLD Command
.10 The 0S Command

s Lo — 3

.6

'HE COMPILER »

.ﬁ.bub»bwbob.b

Label
Field
Space
Comme
Speci
.5.1

- 5.
- 5.
.5.
- 5.
-5.
5.
Xe
6.

E

s
Progyram Names

S

nts

fication Statements

DATA

WORK

COMMON

RESERVE

EQU

REDEFINE

FIELD

utable Statements

Transfers of Information
1.1 ALIGN

1.2 CONVERT

1.3 FIELDNO

1.4 LOOKUP

1.5 MOVE

1.6 SET

dd., Subtract, Multiply, DPivide
he IF Statement

dJutput Control

4.1 BEEP

-4.2 CHAIN

-4.3 FORMSHOW

.4.4 MESSAGE

.4.5 SHOW

vi

3-11
3-11
3-11
3-11
3-11
3-12
3-12
3-12
3-12
3-13
3-13
3-14
3-14
3-14
3-15
3-15

ww
1

-

oo

L T R |

TN N N N N N NN
]

[l i | i
COoOOCWOM NIV BWNNNIN — -

PN NN
1

(Sx]

4.0

4.7

4.8 READ
;4.9 BACKSPACE
-4.10 DELETE
4.1
ra

5.

L S N

ansfers of Control
1 GOTO
.5.2 CALL and RETURN
.6 CHANGE and RESET
.7 MODIFYMODE and ENTRYMODE
e-defined Labels
.1 AGAIN
.2 CLOSE
.3 END
.4 INPUT
.5
.6
.7
.8
.9
og

-

[N
. -
~J
Lo
Lo}

NEXT

NULL

OUTPUT

RETRY

STORE

ram Generation
.1 Editing a Source Program
.2 Compiling a Source Program

.
-
-
-
.
.
-

L R A L~ =

o
(e}
g e

C(‘CXZ‘CCH \J\Y\)\I\Y\)\‘\‘\'H [e2 3)

o]

3.4 The Program File

ogram Execution
Post-process Executlon
Operator Tabbing
Pre-process Execution
Program Reserved Fields
Form Constants

BCIE SN

i~
e}
g e

.

BB DD
L] .
WYY LewRr
L[] .

b LN L

HE INTERPRETER

The START Command

The ADD Command

The CONTINUE Command

The LOAD Command

The DATA Command

Revising an Existing Data File
5.6.1 The MODIFY Command

5.6.2 The FIND Command

5.6.3 Rewriting Existing Records
.7 The BACKSPACE Command

.8 The REWIND Command

.9 The END Command

.10 The 0S Command

.11 The HELP Command

(SN NS N NN
._ .
oL WK

(G2l S S I S N Ol

vii

.8.3 Printing a Compilation Listing.

R

LI D T R |

[SANCARTEN RGN R RGNS RO NG RSN €A N)
|
CC WO N LXJOO U s W

5.12 Data Entry Action

5.13 Interpreter Function Keys
5.13.1 The Form Data Duplicate Function Key (0)
5.13.2 The Load Next Form Function Key (1)
5.13.3 The Backspace Field Function Key (3)
5.13.4 The Return to Monitor Function Key (4)
5.13.5 The Form Data Erase Function Key (6)
5.13.6 The Rewind Data File Function Key (7)
5.13.7 The Backspace Record Function Key (8)
5.13.8 The Read Record Function Key (9)
5.13.9 The Write Record Function Key (.)

5.14 Logical and Physical Data Records

5.15 Data file and OVERFLOW

6. THE PRINT UTILITY
6.1 Printing Disk Data Files
6.2 Printing Forms

7. INFORMATION FOR THE PROGRAMMER
7.1 The Edit Table :
7.1.1 Edit Table Format
7-1.2 Work Area ' ,
7.1.3 Routines to Access the Edit Table
7.2 Structure of the Form in Memory

.2.1 Pointers
.2.2 Data Buffers
.2.3 Form Image
.2.4 Edit Criteria Table
.2.5 Field Programs
7.3 Subroutines Available in the Interpreter
-3.1 DOS Facilities Available
.3.2 Keyboard Input Routine
.3.3 Display Routine
.3.4 Form and Data Access Routines
3.5 String Arithmetic Package
ssembly Language Interfacing and Overlays
4.1 Program Base Address
.4.2 External References
.4.3 Returning to the Interpreter
.4.4 Interpreter Data Areas
4.5 Loading the Assembly Language Program

Appendix A. SAMPLE PROGRAMS
Appendix B. COMMANDS

Appendix C. INTERPRETER FUNCTION KEYS

viii

oo O
1
— =

N U VO NI I I NN NI NI O NN NN
| |2 L N TR Y T A I |
NI JO U UR B ERRASSWLWWRENKN P

| I S S S TN N B N B |

1

Appendix

Appendix

CRITERIA
Appendix
Appendix

Appendix

Appendix

Appendix

FORM GENERATOR FUNCTION KEYS

FORM GENERATOR TYPE, JUSTIFY AND REQUIRE EDIT

ALPHABETICAL LISTING OF STATEMENT TYPES
INTERPRETER FLAG ADDRESSES |
COMPILER ERROR MESSAGES

USER SPACE REDUCTION TECHNIQUES

SAMPLE FORM GENERATION

ix

CHAPTER 1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM.

1.1 Installing the Diskette DATAFORM System

DF1l1 is released on a flexible -diskette, listed in the
software catalog as DF11SYS. -

The following files are included on the DF11SYS release diskette:

DF11CMP/CMD DF11 program compiler

DF11GEN/CMD DF11 form generator

DF11PRT/CMD DF11 print utility

DF11/CMD DF1l interpreter

DF11/0V1 "HELP" overlay

COPYDF/TXT chain file to copy the DF1l system

Additionally, the following DOS.C commands are necessary-
They should be oontained from the latest release of DOS.C.

CHAIN/CMD
CHAIN/OV1
COPY/CMD
EDIT/CMD

Immediately upon receipt of the DF11SYS release diskette,
several copies should be made for backup purposes. This 1is
accomplished by placing the release diskette in drive zero, -
placing a DOS.C system diskette in drive one, placing a DOSGEN’ed
diskette in drive two, and entering:

CHAIN COPYDF;TO#2#
1.2 System Names:

‘DF11 utilizes a concept called a "System Name" (which is
abbreviatea "SYSNAM"). SYSNAM is a one to six character alphabetic
name. All forms in a system, i.e. forms that are to be used ‘
together, should be assigned the same system name followed by a 2
gigit number. Proyrams to be used with a particular form should be
assigned the same system name and number as the form. The program
source file (as created by EDIT) will have an extension of "TXT",
the compiled program object file (as created by DF11CMP) will have
an extension of “DFP", anu the form (as createda by DF11GEN) will

CHAPTER 1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM 1-1

have an extension of "DFF" (SYSNAMnh/DFF) The initial data flle
(as created by DF11) will have the name and. exten51on
“"SYSNAM/TXT".

The file extensions mentionedrabove are created and
maintained by the particular program being run (EDIT, DF11CMP,
DF11GEN, and DF11l). They should not be changed.

1.3 Program Generation

1.3.1 Program Source File Creation
To generate a program enter:
EDIT <SYSNAMnn>;D

where “SYSNAM" is the name of the system of forms and "nn" is the
2 digit number of the form with which the program(s) will be used.
A file named SYSNAMnn/TXT will be created. The ";D" on the command
line causes DF11 tab stops to be used.

When all program statements have been entered, and the EDIT
has been terminated by use of the ":E" command, the program
statements are recorded, and the DOS is relocaded. See the chapter
on EDIT in the DOS User’s Gulde for EDIT commands and further EDIT
parameterization.

1.3.2 Program Compilation
To compile a program, enter:
DF11CMP <SYSNAMnn>[,objectfilel] [;parameters]
The compiler 1dentifies itself with the sign on message:
DF1l1 COMPILER 2.n - ddmmmyy

The compiled object code is placed in the [objectfilel]l. The
default [objectfilel] name is the same as the name of the source
file. The default [objectfile] extension is "DFP". Parameters may
be entered at the time the compiler is executed. The parameters
are separated from the [objectfile] name (if a name is present) by
a semi-colon. If only a semi-colon is entered, the compiler
assumes that no listing is to be printed. If the letter "L"
appears after the semicolon, a listing without code will be
generated. If the letters "L" and "C" both appear after the

1-2 DISKETTE DATA ENTRY SYSTEM

semicolon, a listing with code will be generated. If the letter
"P" appears after the semicolon, a printer image file will be
generated on the disk. If "P" and "C" appear, generated code will

be included in the printer image file. The printer image file will

be given the name "SYSNAMnn/PRT". This file may be printed or

viewed on the screen with the DOS LIST utility. See the chapter on

LIST in the DOS User’s Guide for LIST parameterization-

If no parameters are entered, and a printer is on line, the
messages: '

LIST ON LOCAL/SERVO PRINTER?
and
LIST CODE TOO?

must be answered.
1.4 Form Generation
To generate a qum enter:
DF1LIGEN <inputform>[,outputform]l)objectprogram]
The generator identifies itself with the sign-on:message:
DF1l GENERATOR 2.n - ddmmmyy

The <inputform> name must be in "SYSNAMnn" format. The
default [,outputform] name is the same as the <inputform> name.
The default [,objectprogram] name is the same as the [outputform]
name, but with a default extension of "DFP". '

DF11GEN responds to the following commands. Most are the
same as the cassette form generator’s.

CONSTANT
JUSTIFY
LINK

NEW

OLD

(0N

our
PROGRAM
REQUIRE
REVISE
SEMI-CONSTANT
TYPE

CHAPTER 1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM

1-3

When "OUT" is entered, if field programs are assigned, the
entire [objectprogram] file will be attached to the [outputform]
file. If the [(outputform]l name is different from the <inputform>
name, the [outputform] name should appear on the.command line.
Thus, when "OLD" is entered, <inputform> will be read; and when
"OUT" is entered, the form in memory will be written to
loutputform].

Entering "OUT" automatically teloads the DOS if the form
generation is successful. The DOS may be reloaded at any time
without writing the form by entering "os*".

1.5 Form Testing and Data Entry
To test the completed form, or to perform data entry, enter:
DF1l <SYSNAMnn>[,datafilel [;mode]

The interpreter identifies itself with the sign-on message:

'

DF11 INTERPRETER 2.n - ddmmmyy

The default extension of the data file is "TXT". If no
[datafile] name is entered, the default data file name is
"SYSNAM/TXT". Form "SYSNAMnn" is loaded, the [datafilel is opened.

The initial data entry mode may be specified on the command
line, by placing the first character of the mode ("S" for START:;
"A" for ADD; "F" for FIND; and "M" for MODIFY) after a semicolon.
The commands available in the DF1l interpreter are:

ADD
BACKSPACE
CONTINUE
DATA

END

FIND
HELP
LOAD
MODIFY
08
REWIND
START

The "“START", "ADD", "MODIFY", or "FIND" commands initiate
interpreter action. Execution is the same as for the cassette
interpreter with the exception that entering "END" both terminates
the data file and reloads the DOS.

1-4 DISKETTE DATA ENTRY SYSTEM

The "0S" command reloads the DOS without terminating the data
file. ‘

To maximize the space available for data entry, the data file
should be created on a drive other than the drlve containing the
DF1l system’s diskette.

1.6 Using DF11 with CHAIN

The DOS CHAIN command is a versatile system for providing a
control sequence which is virtually operator proof. It can also be
useful during development for repeated re-compilation, form
generation and test sequences. See the chapter on CHAIN in the DOS
User’s Guide for CHAIN commands and parameters.

All programs in the DF1l1l system may be accessed via a CHAIN
file. However, not all types of operator input may be provided by
that file. For the form generator, all commands may be entered but
none of the characters required by the various commands may be
entered. For the compiler and print utility, all keyin requests,
answers to questions, headings, etc., may be supplied by the chain
file. No keyins may be provided for the interpreter (other than
the initial command line); however, when data entry is complete,
the "0S" command causes the CHAIN to resume- .

The follow1ng is and example of a developmental CHAIN file
for a system called BNK: :

DF11CMP BNKO1

DF11CMP BNKO02;LC

TELLER TERMINAL REPORT - #DATE#
DF11GEN BNKO1

OLD

ouT

DF11GEN BNKO2

OLD

ouT

DF11 BNK:S

CHAPTER 1. A @UICK GUIDE TO THE DISKETTE DATAFORM SYSTEM 1-

[Ga]

The following is an example of a CHAIN file for data entry:

//* PLACE DATA DISKETTE IN DRIVE 1 - PRESS DISPLAY KEY
DF11 BNK,:DR1;:S . -
LIST BNK;LX | .

TRANSACTION REGISTER #DATE#

SORT BNK,BNK/SRT;1-10

LIST BNK/SRT;LX

SORTED TRANSACTION REGISTER #DATE#

//

//TRANSMISSION PHASE

//

DPDMP

690-7543

L

BNK/TXT

x %

* %

//TRANSMISSION COMPLETE
1.7 DF11 Compatibility

DF11 runs in a 16k cassetteless 1100 with a minimum of 1
diskette drive. It has all features of the DATAFORM 2 interpreter
and form generator, and selected features of the configurator.
DATAFORM 2 form images may be converted to DF1l1l form images, and
DF1ll form images may be converted to DATAFORM 2 form images by
using the separately released program DFCONV. DATAFORM 2 source
code programs (with no assembler routines or EQU’s to interpreter
data or routines) are compatible with DF11l source code programs
with the sole exception of the CHAIN statements.

The following changes have been made to DATAFORM 2 to produce
DF11, and are due mainly to the use of a new media and a larger
machine:

1. User space has been increased to 5k.

2. Forms load from diskette in less than a second.

3. The extended interpreter overlays of DATAFORM 2 are
resident in memory .

4. Data records are packed into and span disk sectors.

5. DF11 is CHAIN compatible.

6. Logical record size has been increased to 249

characters.

1-6 DISKETTE DATA ENTRY SYSTEM

The following expansions have been made to the DATAFORM 2 language
to produce the DF11 language:

1. Variable amount of common-
(RESERVE nn)

2. Proygram control over data entry mode.
(ENTRYMODE, MODIFYMODE)

3. Program controlled end of file on data file.
(WEOF)

4. Program controlled backspace on data file.
(BACKSPACE <LABEL>)

5. Program controlled position to end of data file.

(PEOF)

6. Program controlled record deletion.
(DELETE)

7. Program controlled record read.
(READ)

8. Interrogation of current field number.
(FIELDNO <label>)

9. Additional form of the MULTIPLY statement.
(MULT)

The followiny expansions have been made to the DATAFORM 2 compiler
to produce the DF1ll compiler:

1. A variable, rather than a literal, is reQuired for
the CHAIN statement. ,
2. More label space (255 maximum) is provided.

The following expansions have been made to the DATAFORM 2 form
generator to produce the DF1l1 form generator:

1. New edit criteria are available via the REQUIRED
pass:
K - keyin-continuous
X - required and keyin-continuous
2. New edit criteria are available via the
JUSTIFY pass:
J - right justify
Z - zero fill
R - right justify and zero fill
3. New edit criteria are available via the TYPE pass:
O - numeric format, minus-overpunch
S - alphabetic format, shift inversion

CHAPTER 1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM 1-7

1

The following expansions have been made to the DATAFORM 2
interpreter to produce the DF1l interpreter:

1. Operator record delete capability (DISPLAY/5) has
been added.

2. 16.8 rather than 12.4 characters of precision are
available in DF1ll numeric fields.

3. Initial data entry mode specification may be
placed on the command line.

The DATAFORM 2 configurator has been eliminated, and has been

replaced by a print utility for printing forms (with and without
the assigned edit criteria) and data-.

1-8 DISKETTE DATA ENTRY SYSTEM

DF11GEN

DF11GEN

CHAPTER

FORM GENERATION AND TEST
without programs

FORM GENERATION AND TEST
with programs

--> program ------ > DF11CMP ------- > progrém

source object
’ I
I
I
I
__ |
form ' » ‘
—======> Wwith = —-===--- > DF11 ----- - data
program

1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM

CHAPTER 2. GENERAL DATAFORM TERMS AND CONCEPTS

2.1 What is a FORM?

A "FORM" in this User’s Guide refers to the processor’s
screen image. This screen image is created by the form generator.
It contains labeling information, defines the length and positions
of "data fields", and reserves space for "keyin only fields".

The amount of data, the number of fields and the amount of
constant information in the form image determlne exactly how much
memory the form requires.

The form generator may also be used to assign edit criteria
to the data fields. The criteria are assigned field-by- fleld in
separate passes over the form image.

These criteria include the field type:

Alphabetic

Alphanumeric

Numeric digit

Numeric formatted
Numeric minus-overpunch
Shift key inversion

justification:

Left justified/blank filled
Left justified/zero filled

Right justified/blank filled
Right justified/zero filled

entry restrictions:

Fill controlled

Key continuous

Program reserved

Required

Required/fill controlleu
Required/key continuous
Required/program reserved

i

CHAPTER 2. GENERAL DATAFORM TERMS AND CONCEPTS 2-1

semi-constant data; constant data; and automatic form control
(linking to other forms).

In addition, "field programs" may be assigned during form
generation. Up to twenty-six unique field programs may be
referenced in a single form. The same field program may be
assigned to more than one field.

Special function keys, which are discussed in the chapter on
the form yenerator, enable cursor, character, line, and screen
manipulation.

The screen image, basic edit criteria and field programs, if
any, comprise the "form" which is subsequently interpreted by the
DF1l interpreter.

2.2 What is a FIELD PROGRAM?

If extended editing and basic computation are required in a
form, a program written and compiled in the DF1l1l language is
necessary. This language provides access to the entire data record
(on a character or field basis) and definition of working storage
variables, tables, messages, etc. COMMON storage is available to
pass information between forms. The DF1ll language provides the
following editing capabilities:

Arithmetic
Add
Divide
Multiply
Subtract

Data Manipulation
Align
Convert
Fielu number
Lookup
Move
Set

Data Entry Control
Change
Entrymode
Modifymode
Reset

2-2 DISKETTE DATA ENTRY SYSTEM

1

Data Checking
In range
In table
Not in range
Not in table
Null
Retry

Check Digits
Ck1l0
Ckll'v

Comparisons
Equal .
‘Greater than
Greater than or equal
Less than
Less than or equal
Not equal T

Branching

Again
Call
Chain
Go to
Next
Return
Store

Output . :
Backspace
Beep
Close
Delete
End
Formshow
Message
Peof

Read

Show

Weof
Write

CHAPTER 2. GENERAL DATAFORM TERMS AND CONCEPTS

Data Definition .
* Common

Data
Equ
Field
Redefine
Reserve
Work

Data Buffers
Input
Output

The field programs may be assigned to particular fields in a
pass of the form gyenerator. When the form is written out, the
relocatable program will be converted to "absolute" code and
written to the form file.

During data entry, the field program is executed after the
operator enters data into the field where the program assignment
was made. The progyram is executed even if the operator bypasses
the field.

2.3 User Space and How It’s Allocated

When a new form is being created, there are 5000 characters
of memory, called "user space", available. This "space", however,
encompasses all the following:

Common storage

Field programs (if required)
Form image

Keyin data bpbuffer

Writing data buffer

The form generator indicates the amount of free space as soon
as the form image has been defined. The field programs and COMMON
storaye must fit in the remaininy free space- ‘

2-4 DISKETTE DATA ENTRY SYSTEM

2.4 Some Data Entry Features

In conjunction with the DiSPLAY key, the number pad keys can
provide the operator with the following functions:

Backspace field
Backspace record
Delete record

Form data duplication
Form data erase

Load next form
Return to Read record
Monitor

Write record

If semi-contant data is defined in the form, it may be ,
accepted or overwritten by the data entry operator. Constant data
cannot pe overwritten, and is placed in the data record as is-

Forms may be loaded in any order under either program or
operator control.

Operator correction of previously generated data may be
accomplished at any time by either a manual, record-by-record, or
an automatic search, with re-writing in-place permitted.

Data may be added to the end of an ex1st1ng data flle
(positioning is automatlc)

(@3]

CHAPTER 2. GENERAL DATAFORM TERMS AND CONCEPTS 2=

CHAPTER 3. THE FORM GENERATOR

A DF1l "form" is an image displayed on the processor’s screen
which contains form text (explanatory information for the
operator, not to be written to the data file), field definitions
(special characters which define a field to be filled in by the
operator and to be written on the data file) and keyin space
(special characters which define a field to be entered [but not
stored in the data record]). The processor’s screen is &0
characters wide and 12 lines high and any of the 960 positions on
the screen may be used in the form.

Each form is contained in a file named "SYSNAMnn/DFF", where
"SYSNAM" is the name of a system of forms which may reference each
other and "nn" is a two digit number assigned to a particular '
form. How to load the generator, the filenames required, and
default conditions for filenames required 19 discussed in chapter
one.

3.1 Data Field

A data field is part of the form image which starts at a
vertical bar (|) and is continued by carets (7) or underscores
(_). A field stops at the first non-caret or non-underscore
character or the right hand edge of the screen-

Each data field causes a corresponding number of positions to
be reserved in the two data areas (one used for entering and one
used for writinyg data), and each field generates a six character
set of edit criteria. Each field defined has a "field number"”
corresponding to its relative position in the form (and pointing
to its entry in the edit criteria table). The uppermost, leftmost
field is number one. Fields are numbered from left to right, line
py line, from the top of the form down. -

CHAPTER 3. THE FORM GENERATOR - 3-1

The construction "|~""" defines a four character data field;
“|" defines a single character field and "|||" defines three
aajacent single character fields. The differences between one
3-character field and three l-character fields are:

1) only one set of edit criteria applies to the
3-character field whereas each l-character field may
be assigned different sets of edit criteria.

2) Since each set of edit criteria takes 6 characters,
the three l-character fields use more user space
than the single 3-character field.

3) Only one field program_may be assigned to the
3-character field, whereas each l-character field
may have its own field program.

4) The single 3-character field may be right justified
and/or zero filled.

Fields defined by carets will be "space compressed" in the form
image (BUT NOT IN THE DATA RECORD!). When the form is displayed,
space compressed fields will initially appear blank. As the cursor
enters the field, the appropriate number of underscores will be
displayed. Space compressed flelds allocate less "user space" than
non-compressed fields. ‘

Fields defined by underscores are not COmpressed. The
underscore characters are saved as part of the form image.

Constants ana semi-constahts are stored in the field
description area of the form image and therefore can be defined
only for fields initially defined by underscores.

The maximum number of characters in a single data field is 80
since the right hand edge of the screen always terminates a field
definition.

3.2 Keyin Only Field

A keyin only field, with the exception of the initial
character, is defined exactly as is a data field. Keyin only
fields begin with a less than character (<) and are continued by
carets or underscores. They may appear anywhere in the form. Keyin
only fields create a six character set of edit criteria like other
fields and thus have a corresponding "field number". However, no
space 1s reserved for these fields in the data record. A Keyin

(%)

-2 DISKETTE DATA ENTRY SYSTEM

only field may be used as a verify field, or as a program message
field. Nothlng in a keyin only field ever gets written to the
data file.

3.3 User Space

There is a fixed amount of space available which must contain
the form image, the data input/output .areas, the edit criteria
taple, and field programs. This fixed area is called "user space".
There is no limit (other than the size of the screen) to the
amount of text one may include in a form. There is, however, a
limit to the number of field definitions (126) and to the number
of data characters (249) which can be deflned- The total user
space available is 5000 characters.

The number of data characters, defined in the form image,
resexve two areas: the Keyin data area and the writing data area.
In aduition, each field (whether an actual data field or a keyin
only fiela) defined in the form image requiresa six character set
of edit criteria. The characters displayed in the form image, both
lapeliny information and field defining characters (excluding
caretg) reserve user space. Spaces (and carets) in the form image
are "compressed", 1.e., they are represented by a space '
compression character followed by the number of spaces compressed
at that point. One terminator. character is added to each line of
the form image; however, lines which are completely blank require
no space at all. ’

- The amount of user space reserved for the data record, edit
criteria ‘table and form image is subtracted from the total user

space and the amount remaining is 1nd1cated at the end of the form
image generatlon pass-

In addltlon to the data record, edit criteria table and form
image, user space may be allocated to field programs. The length
of a field program is indicated on the listing and on the screen
at the end of program compilation. '

When the form is written to the form file, the amount of user
space remaining (or the excess allocated, if any) is displayed on
the screen. If an excess is allocated, either the form or (if
present) the field programs should be revised.

CHAPTER 3. THE FORM GENERATOR 3-3

3.4 Form Worksheet

To aid in the design of forms, a "DATAFORM Worksheet" 1is ‘
available. This worksheet provides space for designing the screen
image and for recording the various edit criteria, constants, etc.
which will have to be assigned at form generation time. The
worksheet also serves as a record of the form and as a quick
reference for generator commands and function keys.

A printout of‘completéd forms, similar in format to the
worksheet, may be obtained using the print utility.

3.5 The NEW Command
To generate a new form, enter the:
NEW -
command to clear the screen and enter the image generation mode{

Titles and field definitions may be entered. Pressing the
ENTER key places the cursor at the beginning of the next lower
line; pressing ENTER without entering text leaves a blank line in
the form.

'Additional form manipulation is available with the DISPLAY
key and the keys on the number pad. When the DISPLAY key is
pressed, the keys in the number pad to the right of the keyboard
(or the regular number keys) become a set of special function keys
enapling: the movement of the cursor up, down, left and right; the
insertion and deletion of characters; the deletion of words; the
insertion of lines; and the erasure of lines and portions of the
screen-

A key becomes a special function kevy if it is pressed
simultaneously with the DISPLAY key. That is, holding down the

DISPLAY key while pressing the desired number Kkey turns the number
key into a special function key.

3-4 DISKETTE DATA ENTRY SYSTEM

The following is a summary of the special function keys:

Character insert
Cursor "up
Erase to end of screen
Cursor left
Duplicate character
Cursor right
Word remove
Cursor down
Line insert
, Remove character

- ~Erase to end of line
CANCEL Return to monitor

Additionally, the CANCEL key (not the CANCEL function key)
will erase an entire line.

3.5.1 Repeat Key (KEYBOARD)

The KEYBOARD key causes a character (and many functions) to
be repeated. That is, holding down the KEYBOARD key while pressing
a character causes the character to be repeated as long as the
KEYBOARD key is held down. Also, holding down the DISPLAY and
KEYBOARD keys while pressing a number pad key causes the special
function key to be repeated.

3.5.2 Cursor Movement Function Keys (2,4,6,8)

There are four cursor movement function keys which are
non-destructive; i.e., they pass over characters on the screen
without erasing them. The cursor down function key (2) moves the
cursor DOWN, the cursor up function key (8) moves the cursor UP, -
the cursor right function key (6) moves the cursor RIGHT and the
cursor left function key (4) moves the cursor LEFT.

The BACKSPACE key also moves the cursor to the LEFT in a .
non-destructive manner. Backspacing will wrap around from column 1
of a line to column 80 of the preceding line, except, of course,
on the top line. '

The SPACE bar is destructive; i.e., it erases the characters
it passes over, and moves the cursor to the RIGHT.

All cursor movement function keys may be repeated.

CHAPTER 3. THE FORM GENERATOR 3-5

3,5.3fcharacter Insert Function Key (7)

The character insert function key (7) at the upper left of
the number pad, opens a space for character insertion wherever the
cursor is positioned on the screen. This function key may be
repeated. Characters at the right most edge of the screen are
truncated, not wrapped around.

3.5.4 Character Remové Function Key (0)

The character remove function key (0) at the lower left of
the number pad, causes the character at the cursor to be removed
and the remaining characters to be concatenated to the left. The
line is blank filled on the right. This function key may not be
repeated.

3.5.5 Erase Function Keys (1,.,9)

There are several keys available to erase all or part of the
screen image. The erase'function,keys may not be repeated. The
word remove function key (1) causes a word (that is, a group of
characters edged by spaces) to be removed. The line is
concatenated, and blank filled on the right. The cursor may be
placed anywhere in the word when the word remove function key 1is
pressed. , ‘ ' ‘ o

The erase to end of line function key (.) causes the line to
be erased from the position of the cursor to the right hand edge
of the screen.

The erase to end of screen function key (9) causes all
characters to be erased from the cursor to the end of the screen,
i.e., through line 12 character 80. This key could be used clear
the entire screen, if the cursor were placed in the upper left
corner of the screen. '

~ The CANCEL key (not the CANCEL function key) causes the
entire line that the cursor is on to be erased, and places the
cursor in the first position of the line.

3.5.6 Line Insert Function Key (3)

The line insert function key (3) causes a blank line to be
inserted at the line where the cursor is blinking. The line at the
cursor and all lower lines are rolled down the screen one line.
The twelfth line will disappear. This function key may not be
repeated.

3-6 DISKETTE DATA ENTRY SYSTEM

'3.5.7 Duplicate Character Function Key (5)

The duplicate character function key (5) causes the character
immediately above the cursor to be duplicated in the current
cursor position. This function key may be repeated. It has no
effect when the cursor is placed on the top line of the screen.

3.5.8 Return to Monitor Function Key (CANCEL)

When the screen has the desired appearance, the return to
monitor function Key (CANCEL) function key returns control to the
generator’ s monitor. At this point the generator displays the
message:

nnn DATA

mmm BYTES LEFT
indicating the number of characters in the data record and the
number of characters remaining in the user space. If the number of
characters in the data recoru is greater than 249, the generator
displays the messayge:

MORE THAN 249 DATA

The form must'immediately be revised to reduce the number of
characters. If more than 126 fields are defined, the message:

'MORE THAN 126 FIELDS

Again, the form must 1mmed1ate1y be revised to reduce the number
of fields. :

If the'combined space required by the form image, data'areas
and sets of edit criteria exceeds the available user space, the-
generator displays the message:

nnn BYTES OVER

The form should be revised to fit the user space available.
Suyyestions on saving space are discussed in an APPENDIX.

CHAPTER 3. THE FORM GENERATOR 3-7

3.6 Assignment of Edit Criteria

When the form image has been generated, the form is still
only in memory and no edit criteria have been assigned.

Edit criteria may be assigned to each field of a form.
Different kinds of edit criteria may be assigned in different
"passes" over the fields of a form. Each type of edit-defining
pass (TYPE, REQUIRED, JUSTIFY, SEMI-CONSTANT, CONSTANT, PROGRAM,
LINK) must be requested separately, and, finally, the form must be
written to the form file by use of the OUT command. The :
edit-defining passes may be requested in any order. Any or all
edit-defining passes may be omitted, and passes may be repeated to
review or to change the criteria.

During each pass, the form is redisplayed with the cursor at
the first field definition (i. e., the first vertical bar (]) or
less than (<) sign). Any one of the accepted edit criteria for
that pass may be assigned, the field may be bypassed without
changing or assigning the edit criteria (by pressing the ENTER
key), or the edit criteria may be cleared (by pressing the CANCEL
key) . ‘

If a pass is re-executed, the current edit criteria will be
displayed as each field is reached. If no change is needed,
pressing the ENTER key proceeds from field to field.

The backspace field function key (B) may be pressed to
position back to the previous field. When the desired edit
criteria have been assigned, the return to monitor function key
(CANCEL) will return control to the monitor.

To request a pass, enter the name of the pass. Only the first
3 letters of the pass need to be enterea to initiate the pass.

3.6.1 The TYPE Pass

The TYPE pass is entered to set restrictions on the
characters which may be entered into a field. The acceptable types
ror this pass are discussed below.

If no TYPE edit criteria is assigned to a field, any
character is acceptable in any position of that field.

3-8 . DISKETTE DATA ENTRY SYSTEM

3.6.1.1 Alphapetic (A)

The alphapetic edit criteria for the TYPE pass (A) indicates
that characters entereu must be uppercase alphabetics (A through
%) or space.

3.6.1.2 Digit (D)

The digit edit criteria for the TYPE pass (D) indicates that
characters entered must be strictly numeric (0-9). .

3.6.1.3 Numeric (N)

The numeric edit criteria for the TYPE pass () indicates
that characters entered must be of the set of: digits (0-9), a
decimal point, or a minus sign (plus signs are not allowed).

During data entry, numeric fields are checked to contain one
decimal point at most. If a minus sign is present, it must be the
left most character. And, no more than sixteen positions are
permitted to the left and eight to the right of the decimal point.

3.0.1.4 dixed ()

The mixed edit criteria for the TYPE pass (M) indicates that
characters entered must be of the set of: Alphapetics, space,
digits, decimal point, or minus. sign. No other special characters
are alloweu.

3-6.1.5 Numeric Minus-overpunch (0O)

The numeric minus-overpunch edit criteria for the TYPE pass
(O) .indicates that the characters entered must be in numeric
format. The exception is that the right most-character (not the
left) may be a minus sign. A minus sign in the rightmost position
causes the character to the left of the minus sign to be
"overpunched"” with the minus sign. That is, an operator entered
“0-" becomes "};"; a "1-" becomes a "J"; a "2-" becomes "K"; etc.

If the field is assigned the "zero fill” edit criteria in the
“JUSTIFY" pass the overpunch will occur in the rightmost
position-.

Minus overpunch fields should not be assigned the

"fill-control”™ or "key-continuous"” edit criteria in the REQUIRE
pass.

CHAPTER 3. THE FORM GENERATOR 3-9

\
3.6.1.6 Shift Key Inversion (S)

The shift key inversion edit criteria for the TYPE pass (S)
indicates that the alphabetic characters entered are not to be
converted to capital letters unless the shift key 1is depressed.
That is, the shift key has the same effect as it does on a
standard typewriter keyboard.

3.6.2 The REQUIRE Pass

The REQUIRE pass is entered to establish that a field may not
be bypassed (tabbed past without entering data) during data entry.
or that all characters must be entered, or that the field is not
to pe filled by an operator but is to be filled by a field
progyram.

If no REQUIRE edit criteria is assigned to a field, the ENTER
key must be pressed somewhere in the field to proceed to the next
field.

3.0.2.1 Required (R)

The required edit criteria for the REQUIRE pass (R) indicates
that a field is required. This means that during data entry., at
least one character must be entered into the field.

3.6.2.2 Fill Controlled (F)

The fill controlled edit criteria for the REQUIRE pass (F)
indicates that a field is to be fill controlled. This means that
during data entry, the field must be completely filled by the
operator.

Fields whose edit criteria for the JUSTIFY pass is J, Z, or R
should not be £fill controlled. For these fields, the interpreter
aligns the data after the ENTER key 1s pressed.

Fill control fields may be bypassed, however, if the ENTER
key is pressed in the first column of the field. The ENTER Kkey is
an unacceptable key elsewhere in the field.

3-10 DISKETTE DATA ENTRY SYSTEM

3.0.2.3 Required and Fill Controlled (B)

The requireud ana fill controlled edit criteria for the
RECUIRE pass (B) indicates that a field is both required (R) and
£fill controlled (F). The ENTER key is an unacceptable key.

3.6.2.4 Program Reserved (P)

The proyram reserved eualt criteria for the REQUIRE pass (P)
indicates that a fielud will be filled by a ftield program. No
operator keyin is permitted in this field.

This edit criteria may also be set on a keyin only field to
reserve it as an alternate message display area. ‘

3.6.2.5 Required and Program Reserved (5)

The required and program reserved edit criteria for the
REQUIRE pass (S) indicates that a field is to be both program
reserved (P) and required (R). This will prevent writing of the
data record it data has not been entered into the program reserved
tield py a field program.

3.6.2.6 Keyin Continuous (K)

The keyin continuous edit criteria tor the REQUIRE pass (K)
indicates that a field may be terminated either by pressing the
ZNTER Key or by entering the last character (as in fill controlled
fields). o
3J.0.2.7 Reguiréu and Keyin Continuous (X)

The required and keyin continuous edit criteria for the
REQUIRE pass (X) indicates that a field is both regquired and keyin
continuous.

3-6.3 The JUSTIFY Pass
. The JUSTIFY pass is entered to either right justify (rather

that the default left justify) or zero fill (rather than the
default blank fill) a field.

CHAPTER 3. THE FORM GENERATOR 3-11

3.6.3.1 Right Justify (J)

The right justify edit criteria for the JUSTIFY pass (J)
indicates that a field is to be right justified and blank filled
to the left.

3.6.3.2 Zero Fill (2)

The zero fill edit criteria for the JUSTIFY pass. (Z)
inaicates that a field is to be zero filled on the right.

3.6.3.3 Right Justify and Zero Fill (R)

The right justify and zero fill edit criteria for the JUSTIFY
pass (R) indicates that a field is to be right justified and zero
filled on the left.

3.6.4 The SEMI-CONSTANT and CONSTANT Passes

The SEMI-CONSTANT or CONSTANT pass is entered to set
semi-constants or constants into a field in a form. Semi-constants
and constants are characters set into a data field in the form
image. During data entry the operator has the option to accept or
over-write data set by the SEMI-CONSTANT pass; whereas, data set
by the CONSTANT pass automatically becomes part of the data record
and cannot be rejected by the operator. Both commands cause the
form to be displayed with the cursor in the first field capable of
accepting constant or semi-constant information-.

Semi-constants and constants may only be set in fields
initially defined at image generation time by underscores-.

In the CONSTANT pass, the SPACE bar does not set constant
spaces into the field but permits movement to the desired position
within the data field. If constant spaces are required, the caret
key (7) must be used. In additior. neither constant nor
semi-constant underscores (_), vertical bars (|) or carets () can
be set within the field. The CANCEL key will clear any constant
field previously sét. The BACKSPACE key positions back one
character and erases the last character entered.

During the CONSTANT pass, no editing is performed on
constants entered. Unaceptable constants will cause the
interpreter to hany beeping during data entry. Unacceptable
semi-constants will be displayed. This feature may be useful for
presenting prompting information to the operator, e.g., a date
field may have the unacceptable semi-constant "YYMMDD" set to

3-12 DISKETTE DATA ENTRY SYSTEM

guide the operator.

Also, an entire form of constant data should not be prepared;
at least one position must be left for the operator - so that the
form may be viewed and/or written to the data file. All-constant
forms (or forms with no fields) will cause the interpreter to hang
cllicking at data entry time.

Partial semi-constants at the beginning or in the middle of a
rield are meaningless since the operator will have to enter data
over them to enter the remainder of the fiela.-

Once semi-constants or constants have been set, they will
always appear when the form is displayed (e.gy., during the TYPE or
REQUIRE pass). Semi-constants and constants are not destroyed by
assigning edit criteria during other passes.

Semi-constants and constants should be cleared before
executing the REVISE command since their presence will change the
field definitions.

3.6.5 The PROGRA!l Pass

The PROGRAiM pass is entered to assign field program names to
fields. Field programs are written in the DF1l1 language, which is
discussed in a later chapter. Each program is identified by a
single alphabetic character (A - Z). A program is assigned to a
field by entering the appropriate program letter in any field .
where a special processing program will be written.

The same tield program may be assigned to several fields,
e.g., a year anu month range check could be used for any date .
field. Up to twenty-six unique field programs may be assigned in
one form.

3.6.-6 The LINK Pass

The LINK pass is entered to assign a "link" to another form
so that the operator need never be concerned with a form number.
Each form in a DF11 system may have a pointer, called a "link", to
the next form to be used. This pointer must be defined at form
generation time. Form links should be planned carefully so that
forms are accessed in a manner most convenient to the operator.

NOTE: LINKed forms must have the same SYSNAM.

A form link may be either of two types: a manual link or an
automatic link. The operator must press a special function key to

CHAPTER 3. THE FORM GERERATOR 3-13

load a ménual linked form after the data record has been written.
An auto linked form is automatically loaded whenever a data record

is written.
When the LINK pass is entered, the message:
NEXT FORM nnn:

will appear (where nnn is the number of the current linked form in
octal, initially 000). The current linkage information may be
viewed by entering the LINK pass and then simply pressing the
ENTER key to leave the value unchanged

3.6.6.1 Setting a Manual Link

To set a manual link, enter the number of the form (followed
by the ENTER key) which is to be displayed when the operator
presses the form loaa function key.

3.6.6.2 Setting an Auto Link

One data entry transaction may require several DATAFORM
“forms", e.g. forms 1, 2 and 3 (PAYO1l, PAY02 and PAY03) may make
up one payroll transaction. In order to fill in form 1 once, then
form 2 once, then form 3, the operator would have to use the write
function (to write out the data) and then the form load function
(to load the next form).

To facilitate use of multiple page forms (i.e. sets of forms
to be completed in sequence and then reused), the next form links
can be set at form generation time to auto-locad a new form
‘whenever data is written.

To set an auto-link precede the form number with a minus
sign. Thus, when generating form one in the multi-page example
above, enter "-2" as the auto link for form 1l; enter "-3" as the
auto link for form two; and "-1" as the auto link for form 3
(which makes form three wrap around to form one).

3.6.6.3 Clearing a Link

To clear a form link, enter a zero when the "NEXT FORM"
messagye is displayed.

3-14 DISKETTE DATA ENTRY SYSTEM

3.7 The OUT Command

Durinyg the entire form generation time the form is only in

ourT

command. If no errors have pbeen detectedu (e.g. too many fields,
too lony a data record), the form will be written. If programs
have ween specified, the program file (see chapter 1 for a
discussion of where the program file name originates) will be
opened and searched for all referenced programs. If the file or
any of the programs are missing, an error message is displayed and
the form is written without field programs.

At the completion of the form writing grocess, the generator
displays either the messayge:

PROGRAM BASE ADDRESS mmmm

nnn BYTES LEFT
and reloads the DOS or the message:

nnn BYTES OVER
This message means that the form -image plus the data record plus-
the field program is too large to be contained in available user
space- Either the form or the field programs must be revised to
fit into the user space. All numbers including the address

ugisplayed here are decimal.

When the new form has been written, it may be tested Dby
running DF1l1l specifying the newly created form.

" 3.8 The REVISE Command

If an error in the form image is discovered after the image
hags been yenerated, the:

REVISE

command places the generator in the image generation mode with the
current form intact. All edit criteria are c¢leared which means
that all passes have to be re-executed after the form has been
revised-

CHAPTER 3. THE FORM GENERATOR 3*15

If the form is not in memory, the OLD command must be entered
before the REVISE command to load the old form into memory.

NOTE: If constants had already been set into the form, it is best
to enter the CONSTANT pass and clear (using the CANCEL key) all
constant fields (since constants destroy the field definition
characters) pefore entering the REVISE command-

3.9 The OLD Command

Once a form has been recorded it may be retrieved and
modified. The: :

OLD

command loads the form into memory. Any pass of the generator may
be executed; however, note that the REVISE command will clear all

edit criteria.

If the fielu programs associated with a form have changed,
simply enter OLD, to relcad the form, and OUT, to attach the new
version of the programs. Any time a form is read via the OLD
command, all field programs required must be re-attached to the
form.

3.10 The 05 Command
The:
0S

command reloads the DOS without writing the current form in memory
to the form file.

3-16 DISKETTE DATA ENTRY SYSTEM

GENERATING A NEW FORM

HEW
make form image

TYPr REQ Jus SEMI CON PRO

assiyn assiyn assign ~ detine define assign

edit edit edit semi- constants program

criteria «criteria criteria constant letters
our

write form to form file

CHAPTER 3. THE FORM GENERATOR

LINK
set
manual
or auto
1link

3-17

. CHAPTER 4. THE COMPILER

The DF11 interpreter provides field editing capabilities on a
character-for-character basis. Field programs written in the DF11
language provide much greater field editing capabilities. The DF11
language is a high level programming language, similar in
structure to DATABUS and other high level languages. A field
program can perform almost any kind of field (and even character)
manipulation: check digit, range, and table checks; complete
arithmetic processing; inter-form communication; complex data
record movement; code-set conversions; etc.)

The DF11 language is concise, yet powerful. The basic
ingredients of the language are, as in any programming language,
statements which describe data (called "specification" ctatements
in the DF1l lanyuage), and statements which manipulate data
(callea “executable" statements).

4 . 1 Lcdl)(‘i‘[g

Any DF1l1l statement may have a label, and some must have a
label. A "label" beygins in column one and consists of up to eight-
alphanumeric characters (actually, the label may consist of any
number of alphanumeric characters, although all characters after
the first eight are ignored).

Labels have three uses: first, to name data items; second, to
provide a means for branching and subroutine calls within a
DATAFORM program; and third, to name field proyrams (that is, to
associate program code segments to specific fields in the form
image) . '

At most 246 labels may be defined in a DF11l compilation.
The following are examples of acceptable labels:

A

2765

FIELDL7 ‘
LABELSTATEMENT (truncated to LABELSTA)

CHAPTER 4. THE COMPILER 4-1

4.2 Field Program Names

The form generator uses a label called a "field program name"
to associate a specific starting address of a DF11l program segment
with a specific field of a form. A field program name is a label
which is terminated by a star (or asterisk) "*", and there are no
blanks between the label and the star. Since only the first
character of a field program name is passed to the form generator,
it is pointless (and probably could be confusing) to name field
programs with labels which are longer than one character. In
addition, the ygenerator requires an alphabetic field program name.
It is important to note that the compiler does not check for
duplicate field program names, if there are duplicates, it passes
both to the generator.

The following are examples of program names:

E*
7 *

4.3 Spaces

The DF11 compiler is a "free-form" compiler -- that is, the
space character () is by and large ignored by the compiler.
Multiple spaces are treated as a single space, and a single space
is ignored except as a field separator. Spaces may be included as
desired to improve readability. ‘

4.4 Comments
Comments, too, are ignored by the DF1l compiler.

There are two Kkinds of comments -- comments which appear on a
code line after the code; and comments which appear on a line by
themselves. Comment lines must begin with a period (.) or a plus
(+) in column 1. If a listing is printed, a comment that begins
with a plus causes a page to be ejected on the printer and the
comment line to be printed on the top line of the next page of the
listing-

4.5 Specification Statements

As mentioned earlier, specification statements are statements
which describe data. The DF1l1l language contains: the DATA
statement (used to access the output data record); the WORK
statement (used for data storage within a single form); the
RESERVE statement (used to change the size of COMMON); the COMMON

4-2 DISKETTE DATA ENTRY SYSTEM

statement (used for data communication between forms); the EQU
statement (used to describe absolute values); the REDEFINE
statement (used to associate a label with a previously defined
label); and the FIELD statement (used to describe fields of the

screen image form).

Every specification statement has associatea with it an "item
length”. The item length is the number of characters which make up
an individual item of that statement. The item length of each
specification statement below is the length of the entire
statement, unless otherwise indicated.

4.5.1 DATA

The DATA statement refers to specific columns of the OUTPUT
data record. The general format of the DATA statement is:

<label> DATA <n><,m>

" "

where "n" and "m" are decimal numbers in the range 1-249. The
number "n" refers to an initial column of the OUTPUT data record,
and the number "m" refers to a terminal column of the OUTPUT data
record. The item length associated with the DATA statement is:
(m-n)+1l< The columns defined by the DATA statement do not
necessarily correspond to specific fields of the form. Areas may
be redefined. The columns defined by a DATA statement may be:

Identical to fields on the form.

A sub-grouping of a large field into smaller fields.
A combination of smaller fields into a larger fleld.
An overlapping of fields on the form.

TN N
— e S

The following syntax restrictions apply to the DATA statement:

1) "n" and “m" must both be greater than zero but less
than 250. :
2) "m" must be greater than or equal to "n".

3) The DATA statement must have a label.
Examples of the DATA statement:

NAME DATA 1,29 multiple column field

IDCODE DATA 30,30 single column field
AMOUNT - DATA 31,39

DOLLARS - DATA 31,37 Sub-group of larger
CENTS DATA 38,39 field

CHAPTER 4. THE COMPILER 4-3

4.5.2 WORK

The WORK statement 1s .used to reserve space within a field
program. Space reserved may be unlnltlallzed, or may contain ASCII
or octal constants (or tables). o -

To simply reserve uninitialized spacé within a field program,
the following format of the WORK statement is used:

<label> WORK <n>

where <n> is a decimal number in the range 1-249. The area to
which <label> refers has an item length of <n>.

~Working storage mayvcontain ASCII characters. The charaéters
are enclosed in double quotation marks, as in the following
example: -

WORDS - WORK "PRE—DEFiNED CHARACTERS"

A special forcing character, (#) may be used to "force" the
character immediately following it to be included in the string:;
by using this character, the double quotation mark and the forcing
character may appear in the character strlng-

NICKNAME WORK "I AM #"SHORTY#"."
NUMBER1 WORK "I AM ## 1."

Each WORK statement that contains constants generates a code
segment. Normally, every constant working storage segment is
terminated with an additional., special end-of-table character, an
octal zero. This character is included in the over-all length of
the working storage segment, but is not included in the item
length. To conserve memory, it is possible to suppress the special
end-of-table character in a constant working storage segment by
following the last item of the working storage segment with a
semicolon, as in the following examples:

WORK1 WORK "DATA"™
WORK 2 WORK "DATA"“;

The tirst example will generate the following five octal
characters: 0104,0101,0124,0101,000. The second will generate the
following four octal characters: 0104,0101,0124,0101. The item
lenyth of both statements above is four.

Working storage may contain taples as well. The item length of the

4-4 DISKETTE DATA ENTRY SYSTEM

table is determined by the length of the first item in double
quotation marks. Each item in the WORK statement table must be the
same length. Individual items are separated by -a comma. :

In the followiny examples:

TABLEL WORK "1™, "2","3","4","5","6"
TABLEZ2 WORK "12","34","56"

TABLE3 WORK "123","456"

TABLE4 WORK "123456"

all of the working storage tables have the same table length (six
characters plus one special end-of-table character for a total
table length of seven), but the individual item lengths are
respectively 1, 2, 3, and 6.

Working storage items may be continued on more than one line
by using a colon, as in this example: :

CONTINUE WORK "123456","789012":
"345678":
"901234"

Working storage may contain octal constants. The first octal
constant (and only the first) is prefixed by the alphabetic letter
"O". Each octal constant generates only one character of working
storage. An octal constant may consist of any number of octal
diyits; however, only the least significant eight bits are placed
in the octal character. Octal constants may be separated from one
another py a comma, and may be continued from one line to another
py use of the colon. Octal constants, like other constants, are
terminated with an octal zero; a semicolon after the last constant
will suppress the zero. The item length of an octal constant work
area 1is one. Octal constants anad ASCII character strings may not
be mixed in the same WORK statement; WORK statements are either
octal or ASCII. :

The following are examples of octal WORK statements:

OCTALlL WORK 015;

OCTALZ WORK 015,16,17,20

OCTAL3 WORK 015,16,17,20:
25,26,27,30:
35

OCTAL4 WORK 0107

CHAPTER 4. THE COMPILER 4-5

The following syntax restrictions apply to the WORK statement:

1) The WORK statement must have a label.

2) If the WORK statement defines a table, all items in
the table must be of the same length.

3) A comment may appear on a WORK statement if the

comment is preceeded by a period.
4) If the WORK statement merely reserves space (i. e.,
‘does not contain any constants), the amount of space

reserved must be in the range 1-249.
4.5.3 COMMON

The COMMON statement is used to assign labels and reserve
space within the COMMON block. COMMON statements are identical
syntactically to WORK statements. Their main difference is one of
function. The COMMON area is used for transferal of information
petween forms, or for the saving of information used in one form
only, although multiple forms are loaded. The format of the COMMON
statement is: : ' ' ‘ '

[label] COMMON <n>

The tfollowing example could be used to pass a six character total
from one form to another:

TOTAL COMMON 6

It is important for every program using information saved
through COMMON to have the same relative locations of areas inside
the COMMON block. References to COMMON data in second and
subsequent form’s programs must be in the same order. A dummy

COMMON statement, such as:
DUMMY COMMON 6

should be used to skip over 6 unused characters inside the COMMON
block, if those characters are not referenced by the current form,
but are referenced by another form.

4-6 DISKETTE DATA ENTRY SYSTEM

The following syntax restrictions apply to the COMMON statement:

1) A label is not required on a COMMON statement-.

) The maximum total length of the COMMON block is 100
characters unless the length is changed by the
RESERVE statement. ‘

3) A comment may appear on a COMMON statement if the

comment is preceeded by a period.

[N}

4.5.4 RESERVE

The RESERVE statement is used to change the size of the
COMMON block. The COMMON block is initially set to 100
characters. The format of the RESERVE statements is:

RESERVE <n>

where <n> is the size of the COMMON block to be reserved. The
RESERVE statements must appear before all COMMON statements.

NOTE: all forms in a system should have the same size COMMON
block, to prevent any destruction of COMMON data- :

4.5.5 EQU

The EQU statement is used to associate an octal address value
with a label. Following the EQU is a string of octal digits,
denoting an absolute octal address. The initial character of the
string need not be a zero, although a zero will serve as a
reminder that the string is octal rather than decimal.

Previously assembled assembly (as.distinct from DF11)
languagye programs may be referenced by using the EQU statement to
define a lapel, and then transferring control to that label (see
later sections of this manual for transfer of control statements
and for assembly language interfacing).

The following are examples of the EQU statement:

8K EQU 020000
12K EQU 30000

CHAPTER 4. THE COMPILER 4-7

4.5.6 REDEFINE

The REDEFINE statement 1s used to associate a new label with
an elsewhere defined label.

The general format of the REDEFINE statement is:

<label2> REDEFINE <labell><,n><,m>

The value "n-1" is added to the previously defined initial value
for <labell> and becomes the initial value of <label2>. The item
length of <labell> is ignored, and the number "m" becomes the item
length for <label2>. '

For example, suppose a table is defined as follows:

TABLE1l WORK "123456789012"

The item lenyth of TABLEl is 12. Then consider:

TABLEZ REDEFINE TABLE1l,1,6
TABLE3 REDEFINE TABLEl,1,4
TABLE4 REDEFINE TABLEl,1,3
TABLES REDEFINE TABLE1l,3,2
TABLE®G REDEFINE TABLELl, 7,1

The same memory locations are "re-grouped" under different labels,

so that the effect is the same as:

TABLE2 WORK "123456","789012"

TABLE3 WORK "1234","5678","9012"
TABLE4 WORK "123","456","789","012"
TABLES WORK "34","56","78","90","12"
TABLE6 WORK H7Il,ll8ll,ll9ll’"0"'!'l"’"2"

The REDEFINE statement may redefine WORK and COMMON statements
(and the pre-defined label INPUT).

4-8 DISKLTTE DATA ENTRY SYSTEM

The following syntax restrictions apply to the REDEFINE statement:

1) Both <n> and <m> must be in the range 1-249.

2) The REDEFINE statement must have a label.

3) The field following <m> may be used as a comment
field.

4) The REDEFINE statement should immediately follow the
label that is being redefined (i.e., <labell> in the
general format of the REDEFINE above). The REDEFINE
statement is not flaggyed in error if it appears
elsewhere, but erroneous values may be yenerated if
the REDEFINE statement does not immediately follow
the lapel that is being redefined.

4.5.7 FIELD

The FIELD statement is used to reference the OUTPUT fields of
the displayed form. The field reference may be absolute or
relative to the current field. The absolute field reference is
used to reference specific fields of the form.

The format of the absolute FIELD statement is:
<label> FIELD <n>

where "n" is a decimal number in the range 1-126.

The relative field reference is used to reference an offset
(either positive or negative) of the current field-

The format of the relative field statement is:
<label> FIELD <sign><n>

where <siyn> is either a "+" or a "-", and "n" is a decimal number
in the rangye 1-126. ‘

The tollowing are examples of the FIELD statement:

FIELDT7 - FIELD 7
- NEXTFLD FIELD +1
LASTFLD FIELD -1

The lapel appearing on a FIELD statement may be referenced in any
type of arithmetic or conditional statement, as in the following
example:

ADD LASTFLD TO INPUT GIVING NEXTFLD

CHAPTER 4. THE COMPILER , 4-9

4.6 Executable Statements

Executable statements are thdse,statements concerning: 1)
transfers of information; 2) arithmetic; 3) comparisons; 4)
output; 5) transfers of control; and 6) current field assignment.

4.6.1 Transfers of Information

Data is moved from one location to another using one of six
.possible statements: ALIGN, CONVERT, FIELDNO, LOOKUP, MOVE, or
SET.
4.6.1.1 ALIGN

The ALIGN statement format is: ,

[labell ALIGN <fieldl> TO <field2>

The ALIGN first checks both <fieldl> and <field2> for the presence
of a decimal point. If none exists, it is assumed to be at the
rightmost edge of the field. After determining the decimal point,
<fieldl> is moved to <field2>, with decimal points aligned. In
<tield2>, either truncation or zero-fill or both may occur.

In the following example, the source field and the destination
field (both before and after the ALIGN) are shown:

MOVEIT ALIGN FIELD1 TO FIELDZ2
FIELD1 FIELDZ2 FIELDZ2

; (before) (after)
10.1 0000. 0010.
10.1 00.00 10.10
10.1 0.000 0.100
1.234 0000. 0001.
1.234 00.00 01.23
12.34 00000 00012

NOTE: If <field2> is in the data area, the decimal format may be
initialized by setting (during form generation) semi-constant
zeros with a decimal point in the appropriate position.

10 DISKETTE DATA ENTRY SYSTEM

s
I

4.6.1.2 CONVERT
The CONVERT statement format is:
[labell CONVERT <fieldl> BY <tablel> AND <tablel2> GIVING <field2»>
The CONVERT statement will try to find <fieldl> in <tablel>. The
lenyth of <fieldl> is used for the search. The corresponding entry
in <table2> is moved to <field2>.
Given the following specification statements:
TABLEL ~ WORK "“MA","NY","KS","MT",6 "TX"
TABLE?Z WORK "BOSTON","ALBANY","TOPEKA":
"HELENA","AUSTIN" :
ana the followinyg execdtable statement:

CONVERT FIELD1 BY TABLEI AND TABLEZ GIVING FIELDZ

the Lollow1ng will be the contents of FIELDZ2 if the contents ot
FIELD]l are as indicated:

FIELDI1 FIELDZ2
TX AUSTIN
MA - BOSTON
KS ' TOPEKA

The item length of <table2> is used to determine the position of
the corresponding element and the length of the move from <table2>
to <field2> (the item length of <field2> is also checked); ‘
therefore, each separate item in <tableZ> should be enclosed in
double quotation marks.

If the item is not found in <taplel>, no movement of data takes
place. S

The CONVERT statement should be used when the table has gaps, or
is randomly ordered-

d.0.1.3 FIBELDNQ

The FIELDNO statements places the currect field number (in
ASCII) in the area specified by <label2>. The format for the
FIELDNO statement is: :

[labell] FIELDNO <lapbel2>

CHAPTER 4. THE COMPILER 4-11

4.6.1.4 LOOKUP
The LOOKUP statement format is: |
[label] LOOKUP <fieldl> IN <tablel> GIVING <field2>

The LOOKUP statement will use <fieldl> as an index into <tablel>.
The item thus selected will be moved to <field2>. If the index
value is greater than the length of the table, the value moved
into <field2> is indeterminate. The following is an example of the
LOOKUP statement:

TABLE WORK "JAN","FEB","MAR","APR","MAY","JUN":
ICJUL n B "AU.G " v ”SEP " , IIOCT" , "Nov " ’ QIDEC "
LOOKUP NUMBER IN TABLE GIVING NAME

The LOOKUP statement should be used when there are no "gaps" in
the table from which the data movement takes place. The LOOKUP
uses <fieldl> as an item by item index into the table, and hence
will glways find a match, even though it may be outside the range
ot the table (if the index is too large).

4.6.1.5 MOVE

The MOVE statement format is:

[labell MOVE <fieldl> TO <field2>
<fieldl> is moved, left justified, to <field2>. If the length of
<fieldl> is less than the length of <field2>, <fieldl>’s length is
usea in the move. Subsequent characters in <field2> are pnot
changed; their values are as they were before the MOVE. If the
length of <field2> is less than the length of <fieldl>, <field2>’s
length is used, meaning that some characters may be truncated (or
‘lost). An example of the move statement is:
MOVE TOTAL TO WORKI1

4.6.1.6 SET
The SET statement format is:

Tlabell SET <fieldl> TO <field2>

The first character of <field2> is spread throughout <fieldl> --
as for zeroing out a total, or blank filling a message.

4-12 DISKETTE DATA ENTRY SYSTEM

The following example:

STAR WORK "*"
TOTAL WORK "0000OOCOO"

<label> SET TOTAL TO STAR

would set the entire 8 character TOTAL field to stars. The SET
should not be used to zero a field containing a decimal point
which is to be used as a destination for ALIGN or any arithmetic
statements, since the decimal, too, will be overstored-.

4.6.2 Add, Subtract, Multiply, Divide
The standard arithmetic functions of add, subtract, multiply

and divide are provided. These statements must be in the following

formats (specitically, the connectives between <labell> and
<labelZ> must not vary):

[lavell "ADD <labell> TO <lapel2>

[labell SUBTRACT <labell> FROM <label2>
(SUBTRACT may be abbreviated SUB)

[labell MULTIPLY <labell> BY <label2>
(MULTIPLY may be abbreviated MUL or MULT
or MPY)

[labell DIVIDE <labell> INTO <label2>

(DIVIDE may be abbreviated DIV)

Alternatively, any of the above four may be modified by appending
the phrase [GIVING label3] to them. The result of this is that the
contents of the first two labels are not affected, pbut their sum

(difference, product, qguotient) appears at the third label rather
than the second.

NOTE: A comment may appear on an arithmatic statement if the
comment is preceded by a period-

The following are examples of arithmetic statements:

ADD INPUT TO SUBTOTAL

SUB DISCOUNT FROM PURCHASE

MULTIPLY PRICE BY QUANTITY

DIVIDE TOTEST INTC TOTSCORE

ADD INPUT TO OLDBAL GIVING NEWBAL

DIV TOTEST INTO SCORE GIVING AVESCORE

If GIVING <label3> is appended to an arithmetic statement, an
"ALIGH <lawel2> TO <lapel3>" is generated prior to the arithmetic
statement.

CHAPTER 4. THE COMPILER 4-13

v

NOTE: Significance may be lost with GIVING <label3> (before
computation) if <label3> has fewer places of significance than
<label2>.

The result of any arithmetic will be aligned to the decimal point
in the result field. Truncation is performed at both ends of the
field and leading zeros are supplied in non-significant leading
characters. In a field defined as right justified and blank
filled, performing an "ADD NULL TO <field>" will replace the
leading blanks by zeros.

NOTE: Arithmetic should not be performed on minus overpunch

fields. The result of any arlthmetlc using minus overpunch fields
is indeterminate.

4.6.3 The IF Statement
The general format of the IF statement is:
[labelll IF <fieldl><relation><field2> THEN <label2>

If <relation> is true, control is transfered to <label2>, which
may be a pre-defined label like STORE. If <relation> is false,
the next statement in the program is executed. Three types of
relations may be defined:

1) ASCII comparisons (EQ, EQU, EQUAL, GE, GEQ, GREATER,
GT, GTR, LE, LEQ, LESS, LESSTHAN, LT, NE, NEQ,
NOTEQUAL are all acceptable). The characters in
<fieldl> are compared, from left to right, to the
characters in <field2> (using the item lendgth of
fieldl to terminate the compare). Differing lengths
do not cause unequal compares; however, if <fieldl>
ig longer than <field2>, the results are
indeterminate. Comparisons of minus overpunch fields
are indeterminate.

2) Table lookup (INR, INRANGE, INT, INTABLE, NIR,
NOTINRANGE, NIT, NOTINTABLE). <fieldl> is
"looked-up" in the table defined at <field2>. The
item length of <fieldl> is used.

3) Check digit verification. <fieldl> is tested for
correctness of check digit with either a mod 10
(CK10) or a mod 11 (CK1ll) check performed, using the
contents of <field2> as a weighting factor. <fieldl>
should contain the check digit in the least
significant position. <field2> is assumed to be one

4-14 DISKETTE DATA ENTRY SYSTEM

character shorter than <fieldl>.

" The followiﬁg are examples of the usage of the IF statements:

AMOUNT FIELD 1
ACCOUNTNO DATA 21,27
MONTH DATA 1,2

DAY DATA 3,4
DAYTABLE WORK "O1","31™
MONTHTABLE -WORK "01","12"
ZERO WORK "000000™
WEIGHT1 WORK "“212121"

. Check fieldl for strictly positive

A* IF AMOUNT GREATER ZERO THEN STORE
AGAIN

- Check for null input
B* IF NULL EQ INPUT THEN AGAIN
. Check for negative.

c* IF AMOUNT LT ZERO THEN STORE
’ AGAIN

. Check fange using taple

D*# IF DAY NOTINRANGE DAYTABLE THEN AGAiN
IF MONTH NIR MONTHTABLE THEN AGAIN
STORE

. Perform ModlO check digit validation

E? - IF ACCOUNTHNO CK10 WEIGHT1 THEN STORE
AGAIN

4.6.4 Output Control

" The BEEP statement provides an audible tone. The CHAIN
statement 1s used to load another form (in addition to the
auto-loau and linking-load features of the interpreter). Three
statements are provided for displaying information on the
processor’s screen: FORMSHOW, MESSAGE, and SHOW. The WRITE, READ,
WEUF, BACKSPACE, DELETE, and PEOF statements are used to perform.
tunctions similar to the function keys and commands available to

CHAPTER 4.. THE COMPILER 4-15

the operator.
4.6.4.1 BEEP

When the BEEP statement is executed, the processor issues a
‘single BEEP sound. The format of the BEEP statement is:

[label] ~ BEEP
4.6.4.2 CHAIN

The CHAIN statement loads a specific form. The format of the
CHAIN statement is:

[label] CHAIN <label2>

where <label2> is a work area which contains the decimal number of
the form to be loaded (from 01 to 99). A file named "SYSNAMnn/DFF"
is loaded. The current data record is not written; however, the
flag indicating data present is cleared. The form is loaded and
control is passed to the interpreter at the first non-constant
field of the new form.

A CHAIN to the form currently in memory reloads that form and
all its programs. ‘

4.06.4.3 FORMSHOW
The FORMSHOW statement causes the current form to be
redisplayed. All data fields on the screen will be cleared. The
output record is not affected and the current field index is not
changed.
The format of the FORMSHOW statement is:
[labell FORMSHOW

In the followinyg example:

WRITE
FORMSHOW

the last data record written is still in memory; however, it will
be erased from the screen and will appear only as each field is
reached by the operator.

NOTE: The INPUT field is destroyed when the FORMSHOW statement is
executed.

4-16 DISKETTE DATA ENTRY SYSTEM

4.0.4.4 MESSAGE

The MESSAGE statement writes the specified message on the
bottom 1line of the screen.

The format of the MESSAGE statement is:
[labelll] MESSAGE <label2>
The following is an example of the MESSAGE statement:

ERR WORK "ACCOUNT IS OVERDRAWN™
MESSAGE ERR
The MESSAGE statement always erases the bottom line of the form.
However, the message is only temporary and the bottom line of the
form will be restored when the operator writes the data record or
erases the current record.

NOTE: The INPUT field is destroyed when the MESSAGE statement is
executed. '

4.0.4.5 SHOW

The SHOW statement displays a message in the current field-
area of the screen. ’

The format of the SHOW statement is:
[labelll SHOW [label2]

If no [label2] is indicated, the SHOW statement defaults to the
contents of the OUTPUT buffer corresponding to the current field.

The following are examples of the SHOW statement:

SHOW
or : : SHOW TOTAL

CHAPTER 4. THE COMPILER 4-17

The SHOW may be used if computations or table lookup conversions
were made to change the value of the current field, as in the
following example:

CRDRTAB WORK "CREDIT","DEBIT "

LSTFLD FIELD -1

CD N WORK IlC" , uDu

MSG WORK " " ,

S* CONVERT LSTFLD BY CD AND CRDRTAB GIVING MSG
SHOW MSG o
NEXT

Program "S" is assigned to a keyin only field (i.e. a field which
reserves no data space) which is set to "program reserved" (to
automatically execute the program with no operator intervention).
The program tests the preceding field and displays a message
corresponding to that value, for operator information.

NOTE: The INPUT field is destroyed when the SHOW statement is
executed.

4.6.4.6 WRITE

The WRITE statement writes the data record to the data file.
The format for the WRITE statement is:

[labell WRITE
Control is returned to the next statement in the field programe.

The data area in memory is not cleared; and may be used for
further computation or for auto-duping selected data.

¥

The WEOF statement writes an end of file mark on the data
file. The format for the WEOF statement is:

[labell] WEOF

The interpreter read pointers are set to the end of file mark.
The WEOF statement places the data file in MODIFYMODE.

4-18 DISKETTE DATA ENTRY SYSTEM

4.0.4.5 READ

The READ statement reads the next reccrd created by the ,
current form into the data area. The format for the READ statement
ig:

[labell READ

The data file should be in MODIFYMODE for the READ and any
subsequent WRITE statements to be executed properly. If an end of
file mark is read, the data record will contain binary zeros.

4.6.4.9 BACKSPACE

Theé BACKSPACE statement backgpaces the data file. The format
for the BACKSPACE statement is

[1doelll ‘ BACKSPACE <label2>
where <label2> is a WORK area which contains the numper of records
to packspace. The number is a count of records created by the
current torm. The data file should be in MODIFYMODE for the
BACKSPACE to pe executed properly-

4.06.4.10 DELETE

The DELETE statement deletes the current data record. The
format for the DELETE statement is:

[labell DELETE

The entire record is over-written with delete characters (032),
ana written to disk. :

4.6.4.11 PEOF

The PEOF statement positions the data file to the end of file
mark. The format of the PEOF statement is:

[labell PEOF

File pointers are set so that the next WRITE operation will
overwrite the end of file mark. '

CHAPTER 4. THE COMPILEK 4-19

4.6.5 Transfers of Control

The three transfer of program control statements are the GOTO
statement, the CALL statement, and the RETURN statement-

4.6.5.1 GOTO

Control is immediately transferred to the label following the
GOTO:

GOTO <labell>

For the pre-defined labels, the word GOTO is optional. For
programmer defined labels, it is mandatory.

The following are examples of the GOTO statement:

GOTO OVERDRAW

GOTO NEXT

NEXT
4.6.5.2 CALL and RETURN

A single level of subroutine nesting is provided with the

CALL and RETURN statements. A program may contain more than one
set of CALL and RETURN statements -- but a CALLed subprogram may
not CALL another subprogram.
The statement formats are:

[labell CALL <subprogramname>
RETURN

If a RETURN is executed with no preceeding CALL (in the current
field program) a GOTO NEXT is executed.

4.6.6 CHANGE and RESET
The CHANGE statement is used to transfer the input pointer
from the current field (i.e., the sequence number of the field as
it appears in the form) to another field. The new field number or
displacement from the current field number is specified
immediately after the CHANGE statement:
[labell CHANGE [sign]<n>

For example, after the statement:.

4-20 DiSKETTE DATA ENTRY SYSTEM

CHANGE +1

is executed, INPUT still contains the entered data; however, the
current field number has been incremented by one and OUTPUT now
reflects the position in the data record corresponding to the new
tiela. Atter the statement:

CHANGE 1

is executed, however, the current field number has been changed to
the first field in the form, that is, field 1.

When a field program is entered the number of the current field is -
saved and may be restored at any time. The:

[labell RESET

statement will reset the field pointer to the field current when
the program was entered

4-6-7 MODIFYMODE and ENTRYMODE

The MODIFYMODE and ENTRYMODE statements allow the field
program to control the data entry mode. The formats of these
statements are:

[lavell MODIFYMODE
[labell] ENTRYMODE

The "mode" statements place the interpreter in the indicated mode.
The data file is not affected in any way..

HOTE: The statements PEOF and ENTRYMODE when executed in that
order duplicate the monitor’s "ADD" command.

4.7 Pre-defined Labels

The nine labels discussed in this section may not be defined
in DF11 programs. They have specific meaning to the DF11
interpreter, and are included automatically in every DFI11
compilation.

The pre-defined labels INPUT, NULL, OUTPUT, and RETRY refer
to locations within the interpreter. These four labels may be used
as source or destination operands in data movement and comparison
statements. Examples of the use of these labels are given below:

vOVE INPUT TO OUTPUT

CHAPTER 4. THE COMPILER - 4-21

IF NULL EQ INPUT THEN AGAIN
IF RETRY EQ NULL THEN STORE

The pre-defined labels AGAIN, CLOSE, END, NEXT and STORE
cause a transfer of control from the field program back to the
DF1l interpreter. These five labels may be used as the destination
address of comparison or GOTQO instructions, as in the example:

B* IF NULL EQ INPUT THEN AGAIN
GOTO STORE

or may be referenced by name alone, as in:

C* ADD INPUT TO TOTAL
STORE
D* NEXT
E* CLOSE
F* END

AGAIN, CLOSE, END, NEXT and STORE are means of exiting a field
program. It is important to note that the interpreter does not
place data in the OUTPUT buffer before a field program is called.
It is the responsibility of the field program to do one of three
things:

MOVE INPUT TO OUTPUT

MOVE <somethingelse> TO OUTPUT (where
<somethingelse> may or may not be based upon

INPUT)

3) Exit the field program through the interpreter
label STORE, which will automatically MOVE INPUT TO
OUTPUT and position to the next field in the form.

N =
— ~—

4.7.1 AGAIN

This label returns control to the interpreter at a point
which indicates an error to the cperator and re-requests the
current field. That is, the processor BEEPS and returns the cursor
to the first position of the field.

4.7.2 CLOSE

This label returns control to the interpreter at a point
which closes the data file; displays the message:

PROGRAM WRITTEN EOF

and reloads the DOS.

4-22 DISKETTE DATA ENTRY SYSTEM

4.7.3 END

This lapel returns control to the interpreter at the point as
if the operator had pressed the write data function key.

4.7.4 TJAPUT

This lapel designates the contents of the keyin buffer ,
immediately prior to entering the field program. The data in INPUT
has not yet been stored in the OUTPUT buffer. It’'s length is the
length of the current field, and it has been validated according
to the edit criteria in the form itself prior to executing the
field program.

4.7.5 NEXT

This label returns control to the interpreter at the point at
which the current field number is incremented. The cursor is moved
to the next sequential field. No data is stored-.

4.7.6 NULL

This label designates a location in the interpreter which
contains a binary zero. It may be used to determine if the data
file is in normal data entry mode or modify mode; or if data is
present in the OUTPUT record (meaning that this field had been
entered before). The item length of NULL is always less than the
item length of any variable. Therefore, in comparisons, NULL
should be referenced first since the length of the first operand
is used for the comparison-.

4.7.7 OUTPUT

This label desigynates the -contents of the data OUTPUT buffer
for the current field. If no data has been stored, OUTPUT has the
value of pinary zero (NULL). The length of OUTPUT is defined at
execution time by the length of the current field. OUTPUT 1is
undefined tftor keyin only fields.

4.7.8 RETRY

This label designates a location in the interpreter which
contains a binary flag indicating whether the data file is in
modify or data entry mode. RETRY can be checked by a field program
by comparinyg RETRY to NULL. If RETRY equals NULL the data file 1is
in data entry mode.

CHAPTER 4. THE COMPILER 4-23

4.7.9 STORE

This label returns control to the interpreter at the point
where the current contents of INPUT is transferred to the OUTPUT
buffer. That is, exiting a field program through STORE is
equivalent to: '

MOVE INPUT TO OUTPUT
NEXT

4.8 Program Generation

Compilation of a program consists of two processes: using the
DOS editor to create a new source program, or edit an existing
program; and using the DF1l compiler to compile a new, newly
editea, or old program.
4.5.1 Editing a Source Program

The commands of the general purpose editor are discussed in
the chapter on EDIT in the DOS User’s Guide. The name of the
program file to be edited/created is indicated on the initial
command line: '

EDIT <program>;D

where ";D" indicates DF11 tabstops. Field program source file
names should be in the "SYSNAMnn" format. The DF1l compiler and
form generator all use the "SYSNAMnn" convention, and distinguish
among files by their extensions.
4.8.2 Compiling a Source Program

When the source program has been edited, it should be
compiled. This is accomplished by entering:

DF11CMP <sourcefile>[,objectfilel [;options]
The compiler displaysya sign-on message:
DF11 COMPILER 2.n - ddmmmyy
The compiler makes a first pass through the source file preparing

a sympbol table. The actual code generation and listing production
take place on the second pass over the input file. ‘

4-24 DISKETTE DATA ENTRY SYSTEM

At the completion of the compilation, some or all of these
messayes are displayed on the screen: '

STORAGE USED IN DECIMAL: 00000 RELOCATABLE, 00000 COMMON
FIELD PROGRAMS:
A 00000
A 00000
END OF COMPILATION: NO ERRORS.
or END OF COMPILATION: n ERRORS.

These are descriptions of the proygram, telling the length of the
entire program, and listing, in octal, the relocatable starting
address of each of the programs defined. The END message lists the
number of errors in decimal, if any occurred. After this the DOS
is reloaded. : '

Any error messages are automatically displayed on the screen, with
a star indicating the part of the source line in error. The
display may be stopped momentarily by preSSLng of either the
KEYBOARD or DISPLAY Kkeys.

4.8.3 Printing a Compilation Listing

The first action of the compiler is to test whether a servo
or local printer is a part of the compiling system. If either of
them are, the message: :

LIST ON SERVO PRINTER?
or , LIST ON LOCAL PRINTER?

is displayed. A response of "Y" to this messagye will result in a
printed listing of the program, as it is compiled. The listing
consists of three parts: ‘

1) The line number.

2) The initial address (either absolute or
relocatable) associated with the
statement line.

3) The line as it was input.

If a listing is to be printed, the message:

CODbE TOO?
is displayed. A response of "Y" to this message will place
the code generated for each line (eight characters per

printed line, using as many lines as necessary for the
amount of code generated) on the listing-.

CHAPTER 4. THE COMPILER 4-25

These listing options may be specified in the [;options]
field of the DF11CMP command line. A semicolon (;) alone
indicates that no listing is to be printed; a semicolon
followed by: an "L" indicates that a listing is to be
printed; a "P" indicates that the printer records are to be
placed in a disk printer-image file (whose name is
<sourcefile>/PRT) instead of on the printer; and a "C"
together with either the "L" or the "P" indicates that
generated code is to be included on the listing.

If a listing or print file is requested, a heading line may
be entered. ,

4.8.4 The Program File

When compilation is complete, a file of the name
“<sourcefile>/DFP" has been generated which contains the compiled
code. The compiled code file consists of a header record and both
relocatable and absolute object code records.

The header record contains the length of the relocatable object
code, and the names and startinyg addresses of all field program
in the file. ,

4.9 Proyram Execution

4.9.1 Post-process Execution

Field programs are always executed as a "post-process" to
data entry; that is, the program is not executed until the data
has been entered, edited, and accepted by the interpreter. Thus,
alpha-numeric checks, right justification, etc., will already have
been performed on the input.

4.9.2 Operator Tabbing

If the operator chooses to bypass a field which is not
required, INPUT is NULL (binary zero).

If the cursor enters a field during backward or forward tabbing
and no new data is entered, the data currently in the output
record (which may or may not be NULL) is passed to the field
program. If, however, new data is keyed in, the new data is
presented to the field program in the INPUT area while previously
entered data is still available in the OUTPUT area. If the
previously entered data is cancelled by the operator, INPUT is

4-26 DISKETTE DATA ENTRY SYSTEM

NULL .
4.9.3 Pre-process Execution

To execute a field program as a "pre—process", the
pre-process program should be assigned to a preceding field.

4.9.4 Proyram Reserved Fields

If a fielu is designated as a "proyram reserved" field, data
for that fielud is to be assigned by a field program. When the
fielu is entered, the field proyram is executed immediately and
the area designated by INPUT is undefined.-

4.9.5 Form Constants

Constants and semi-constants are set into the OUTPUT area
prior to data entry. However, fields containing constants will be
passed through the basic interpreter as if the constant characters
had been entered. They will be edited and passed to the field
program in the INPUT area. Unnaceptable constants will cause the
interpreter to hang BEEPing during data entry:

'CHAPTER 4. THE COMPILER 4-27

CHAPTER 5. THE INTERPRETER

Data entry using DF1l involves loading the interpreter, then
loading a form, selecting a data entry mode, and finally entering
data into the fields defined by the form. When the data has been
entered on the screen to the operator’s satisfaction, and the data
record has been written to the data file (by an operator function
key or a field program instruction) then the same form is cleared

and redisplayed with only constant and semi-constant data
appearing.

The format for the DF11 command line is:
DF11 <SYSNAM[nnl]l>[,datafilel [;options]

where SYSNAM is the name of the system of forms. The default form
numper value [nn] is 0l. The default [datafile]l name is SYSNAM,
and the default [datafile] extension is TXT. The [options] field
indicates an initial command- The [options] accepted are "S" for
START; "A" for ADD; "M" for MODIFY; and "F" for FIND.

The interpreter displays a sign on messaye:
DF11 INTERPRETER 2.n - ddmmmyy

The START and ADD commands place the data file in an "OPEN"
mode. The data file must be placed in the "CLOSED" mode (e-g., by
use of the END command), before another START or ADD command may
pe entered.

. The interpreter will respond to the commands discussed below.
A form number (in decimal) is optional in most of these commands;
if it is omitted, the current form will be assumed. An error may
occur if a form number is required and none is currently in use.

Only the first letter of a command is regquired; for example,

"START 2" may also be entered as "S 2". o

CHAPTER 5. THE INTERPRETER 5-1

)]

DATA ENTRY FLOW

DF11 <SYSNAM>|[,datafile] [;mode] -

Enter
Operator
Commands

Operator
Input

Enter END
Operator Command

SYSNAM/TXT

DISKETTE DATA ENTRY SYSTEM

5.1 The START Command
The:
START [nn]
commana displays the following message:
START <filename/ext> ON DRn? .

pefore any data is placed into the file, so that the operator can
verify whether the filename, extension, and drive number are
correct. If the name, extension, and drive are correct, a
response' of "Y" should be entered. The START command causes data
to be placed at the beglnnlng of the data file.

After a response of "Y" to the START message, 1if a form
nunber was specified on the START command; or if a form is
currently in memory; that form is "entered" - 1.e., the ftorm is
displayed wilh the cursor at the first non-constant tield.

After a response of "N" to the START message; or if no form
number was specified on the START command and no form is currently
in memory, the message:

SELECT DATA MODE

is displayed, and control is returned to the interpreter’s
monitor.

NOTE: The START command does not check for possibly valid data in
the data file; care must be taken so that a possibly valid data
file is not overwritten.
5.2 The ADD Command

If the data file already exists, the:

ADD [nn])

command positions to the end of any data already in the file. If a
form is already loaded or a form number is specified in the
command, the form will be entered after the data file is
positioned. if there is no form in memory., control is returned to
the Interpreter’ s monitor.

CHAPTER 5. THE INTERPRETBR 5-3

5.3 The CONTINUE Command

If the data file is open, and the interpreter is positioned
in the midst of the file, the:

CONTINUE [nn]
command backspaces the data file one logical record,and reads

forward until an end of file mark is found. Other action is
identical to the ADD command.

5.4 The LOAD Command

The first form to be loaded may be specified along with the
system name on the interpreter command line, as indicated above.

If no number is supplied at that time, form number one is assumed
(SYSNAMO1). If any other form is to be lcaded (replacing any form
currently in memory), the:

LOAD <nn>
command loads form named "SYSNAMnn/DFF" into memory. If a data
file has been opened, the form is entered. If no data file has
been opened, the message:

FILE CLOSED
is displayed and control is returned to the interpreter’s monitor.

New forms may be loaded without disturbing the position of

the data file. Each data record has associated with it the form
number with which it was created so that subsequent modifipation
can identify data generated by a particular form.

If the form is not on the diskette, the message "BAD FORM"
will appear.

5.5 The DATA Command
The:
DATA

command places the data file in the data entry mode initially. or
returns to the data entry mode from the interpreter’s monitor. If

5-4 DISKETTE DATA ENTRY SYSTEM

no form is in memory or if the data file is not open, an error
message is displayed and control returns to the interpreter’s
monitor. Data currently in memory will not be disturbed and w111
be displayed whenever the form is re-entered.

5.6 Revising an Existing Data File

5.6.1 The MODIFY Command

Any data record on a DF11 generated data file can be accessed
for review or correction.The:

MOD [nn]

command enables the operator to manually access any data record
created by a specified form and to then either bypass or change
that record on the data file. The file is searched for the first
data record created by the current form. Once a record has been
found, the data file is in an "open" mode and may be searched in a
forward direction by pressing the read next record function key
(9), or, from the monitor mode, by entering another MOD command.
To access records already passed over, the rewind function key (7)
rewinds the data file (as does the initial MOD command).

If the data file is in the ADD/START mode, the MOD command
automatically writes an end of file mark on the data file.

During modification, a new form may be loaded (without
disturbing the position of the data file) 'and that form will
supsequently be used for finding data records. Once a record has .
peen found by the MOD command, the contents of all fields will be
displayed in the form. Previously recorded data supercedes form
constants, thus, the actual data from the file will be displayed, -
overlaying the form’s constants (anu changing its display., if
different). However, the form’ s constants will be set into the
data record when the field is entered (as they are for new
records) .

Data in a field may be changed at this time by entering new
data in the field. Pressing ENTER in the first column of a field
leaves the data unchanged. The edit criteria and field programs
associated with the fields are still in effect, and will be
re-executed.

CHAPTER 5. THE INTERPRETER 5-5

5.6.2 The FIND Command
If unique data in the record to be corrected is known, the:
FIND I[nn]

command may be used. This command loads the specified form (if
different from the current form) and displays the form so the
operator may enter characters into any fields to use as a key in
searching the file. All edit criteria are applied to .fields
(except field programs and required edit criteria) when setting up
the match data. '

When the data to be matched has been entered, the operator
must remember to press the ENTER key after data has been entered
in the last field of the search key before pressing the read
record function key (9) to start the search. The interpreter will
search the data file forward looking for the record generated by
the specified form and containing the specified data-

Once the matching data has been found, operation proceeds as
in the MOD command.

If a match is not found, the message:
END OF DATA
appears and control is returned to the interpreter’s monitor.

The search may be terminated by pressing both the KEYBOARD
and DISPLAY keys simultaneously. The operator may want to stop a
search if, for example, the wrong system name was specified, the
wrong form was specified, or the wrong match data was given for a
FIND. Control will be returned to the interpreter’s monitor.

5.6.3 Rewriting Existing Records

Data records are rewritten, in both FIND and MODIFY modes, by
the use of the write record function key (.). If the record was
fetched using the MOD command, the next data record will
automatically be read and displayed. If the record was fetched by
the FIND command, control is returned to the interpreter’s '
monitor.

If no field needs to be changed, the next record can be

fetched by pressing the read next record function key (9); note
that any modifications made will be destroyed by the read

5-6 DISKETTE DATA ENTRY SYSTEM

function. The write record function key (.) must be used to cause
updating of the record (unless the write is executed by the field
progyram, in which case the field assigned the program must be
entered) .
5.7 The BACKSPACE Command

In the ADD/START mode, the:

BACKSPACE

command backspaces the data file one logical record after writing
an end of file mark on the data file and placing the data file in
the MODIFY mode.

In the MODIFY mode, the BACKSPACE command backspaces twice
and reads forward once under form number control; that is, if the
record being read was not created by the current form, preceding
records will be read until a form number match is found-.

The backspace record tunction key (8) also executes a
BACKSPACE command .

5.8 The REWIND Command
The:
REWIND
command rewinds the data file and positions to the first data
record created by the form currently loaded. The data file may not:

pe rewound if it is in the ADD/START mode.

The rewind data file function key (7) also executes the
REWIND command- ‘

5.9 The END Command
The:
END
command is used to write an end of file mark on the data file.
Switching from ADD/START mode to MODIFY mode automatically writes

an end of file mark on the data file. The END command is rejected
in the MODIFY mode.

o
!
<

CHAPTER 5. THE INTERPRETER

5.10 The 0S Command
The:
0Ss

command is used to terminate exeution of DF11. No file mark is
written on the data file. The DOS is reloaded.

5.11 The HELP Command
The:
HELP

command will display an explantion of interpreter commands and
function keys. The data file must be closed before the HELP
command is accepted. The HELP command overlays the current form
in memory with a standard form whose name .is DF11/0Vl1.

The DF11/0V]1 form released with DF11 is a description of the
DF11 command and function keys. It may be replaced by a form more
closely related to the data entry system as seen by the operator.

Pressing the load next form function key (1) will load form
one of the data entry system. Pressing the monitor function key
(4) will return to the interpreter’s monitor.

5.12 Data Entry Action

In the data entry mode, data set by a CONSTANT command at
form generation is displayed and the cursor is placed at the first
non-constant position on the form. Data set by the SEMI-CONSTANT
command at form generation time i1s displayed and the cursor is
placed in the the first position =f the field (over the
semi~constant).

If partial constants are set at the right hand end of the
field, data must pe entered up to the constants; otherwise, the
constant data may be omitted in the output record.

During data entry, a CLICK sound is made for each accepted
character. If a character fails to pass the TYPE edit criteria for
the field (alpha, numeric or mixed) a BEEP i1s sounded and the
cursor does not advance.

A BEEP is sounded if a key is pressed and the Interpreter is

5-8 DISKETTE DATA ENTRY SYSTEM

not ready to accept a character because of disk activity.

When entering data, pressing the ENTER key (or in
keyin-continuous or fill-controlled fields, entering the last
character) causes the field to be further edited (right justified,
zero filleda, checked by program, etc.) and, if no errors are
found, the cursor moves to the next field. After the last field of
a form is entered, the cursor is placed back at the beginning of
the first field awaiting a write record function (.) or other
commands from the operator.

When the interpreter detects an error in a field, it places
the cursor at the beginning of the field just entered and causes
the processor to BEEP. The cursor does not advance to the next
field. The unacceptable data is not set in the data area in
memory, but still appears on the screen. If the operator decides
to tab past the field, the last accepted data (blank if none has
been entered) is displayed.

5.13 Interpreter Function Keys

The ENTER key is used as a forward tab key and the backspace
field function key (3) is used as a backward tab key. Forward
tabbing past required fields is not permitted. Note that
alpha/numeric editing occurs as data is being entered into the
field. When the field is complete, further editing is performed on
numeric and right justified fields to insure compliance with
format restrictions (e.g., minus sign must be to the left of the
field). Field programs are not executed until all other editing
has been performed successfully.

5.13.1 The Form Data Duplicate Function Key (0)

Once a form has been completed, the data is transferred to
the OUTPUT buffer from which it is written to the data file. The
OUTPUT butfer is available to the operator for form data
duplication by means of the form data duplicate function key (0).
If no previous record has been written, or if the preceding record
was created by a different form, the results of pressing the form
data duplicate function key (0) are undefined.

5.13.2 The Loau Next Form Function Key (1)

The next form (specified by the linkage information in the
current form) will be brought into memory when the load next form
function key (1) is pressed. The current data record must be
recorded, either under program control, or by use of the write
record function key (.), prior to loading the next form, since

CHAPTER 5. THE INTERPRETER . 5-9

pressing the load next form function key (1) does not write the
data record, but instead clears any data in memory.

5.13.3 The Backspace Field Function Key (3)

The backspace field function key (3) is used to retreat from
a field to the previous field. No indication is given to field
programs that the backspace field function has been executed.

5.13.4 The Return to Monitor Function Key (4)

Whenever it becomes necessary to execute one of the
interpreter "commands" while entering data into a form, the
operator must press the return to monitor function key (4) to
return control to the interpreter’s monitor. Only then may the
command be executed.

5.13.5 The Form Data Erase Function Key (6)

The form data erase function key (6) clears the entire data
area (without writing it to the file) and redisplays the cleared
form. No indication is given to field programs that the Data Erase
function has been executed.

5.13.6 The Rewind Data File Function Key (7)

The rewind data file function key (7) is acceptable only in
MODIFY mode. The rewind data file function key (7) rewinds the
data file and positions to the first data record created by the
currently loaded form.

5.13.7 The Backspace Record Function Key (8)

If the data file is in ADD/START mode, the backspace record
function key (8) causes the interpreter to write an end of file
mark on the data file, place the data file in MODIFY mode, and
display the next preceding data rccord written using the current
form.

If the data file is in the MODIFY mode, the backspace record
function key (8) causes the interpreter to display the next
preceding data record written using the current form.

5-10 DISKETTE DATA ENTRY SYSTEM

, R A
5.13.8 The Read Record Function Key (9)

The read record function key (9) is acceptable only in MODIFY
mode. It causes the interpreter to search forward in the data file
for the next record that was written by the current form.

5.13.9 The Write Record Function Key (.)

The write record function key (.) is used to write the
current data record to the data file. If one or more required
fields have not been completed when the write record function key
(«) is pressed, the processor BEEPs and the cursor is placed at
the first untilled required field. No data is written to the file.
If all required fields are completed, a data record will be
written to the data file whenever the write record function key
(.) is pressed. The data record is written even if only
incomplete data has been enterea. If an incomplete data record 1is
written, it will contain ASCII zeros in all fields defined as zero
filled (right justified, zero filled and left justified, zero
filled) and spaces (or constants, if any) in all other unfilled
fields. -

After the current record has been written to the data file,
the form will be displayed with all data fields cleared to null
values (or to the form constants or semi-constants if any) ready
for re-entry of data from the beginning. If, however, an auto-link
is set when the write record function is executed, the data is ’
written out and the linked form is automatically loaded and
displayed.

5.14 Logical and Physical Data Records

The lenyth of the data record generated during data entry is
determined by the combined lengths of all data fielus in the form
(maximum 249 characters). The physical sector containing the data
record also contains a form number (1 binary character biased by
4) and a pointer (1 binary character) which are transparent to all
systems other than DF1l or programs especially designed to access
DF11l data files. This means that editing or sorting or updating
via DATABUS will remove the form numbers necessary to access these
reCcorus under DF11.

CHAPTER 5. THE INTERPRETER 5-11

The format of a logical record is:

data fields (written to their defined lengths) in the
order they appear on the form (from left to right and
from top to bottom)

logical record terminator (015)

Logical records are packed into physical records. A logical
record may span two physical records. The end of physical record
character (003) is followed by pairs of binary numbers,
representing the form number biased by 4 and starting disk buffer
location of all logical records beginning in the physical record.
Deleted records are entirely overwritten by the delete character
(032), and their form numbers are set to zero. Incompletely
filled data fields are'filled with either spaces or zeros,
depending on the field type edit criteria. Only 251 characters of
the physical disk sector are used by DF1l1l.

.15 Data lee and OVERFLOW

Approximately 840 sectors are available on a diskette which
contain only an operating system. To insure proper termination in
the event that a diskette becomes full of data, DF1l opens a file
called OVERFLOW/SYS. Six sectors are allocated to this. When the
last available sector on a diskette has been written to the data
file, the following mesaye is displayed:

DISKETTE FULL CONTINUE TO NEW DISKETTE (N,Y,
OR FORM NUMBER OF FINAL RECORD)?

If an “N" is entered, the last data record entered is written to
the diskette, and an end of file mark is written on the data file.
If a form number is entered, the last data record entered 1is
written to the diskette, and that form is loaded and will be
written to the data file, as a tvailer record, before the end of
file mark. If a "Y" is entered, the last data record entered and
an end of file mark are written to the data file and the message:

REMOVE DISKETTE FROM DRIVE n; PLACE IN ENVELOPE;
ON WHICH DRIVE SHOULD THE FILE BE CONTINUED?

is displayed. When the drive number has been entered, a file
whose name is the same as the original data file, but whose
extension is TXn (where "n" is initially 1 and is incremented by 1
for every continuation) is created on that drive. ‘

5-12 DISKETTE DATA ENTRY SYSTEM

An attempt to continue a file whose extension is TX9 will cause
the message:

FILENAME CANNOT BE CONTINUED

to be displayed-‘

CHAPTER 5. THE INTERPRETER 5-13

CHAPTER 6. THE PRINT UTILITY

The print utility program (DF11PRT) may be used to print
either DF1l data files or forms. The system name must be provided
on the command line. If the system name includes a form number,
that form will be printed. A parameter may also be placed on the
command line following a semi-colon. A “"D" parameter indicates
the data file associated with the system should be listed; an "A"
parameter causes all forms in the system to be printed.

6.1 Printing Disk Data Files

The data file may be printed either bv the "D" parameter or
by answering "YES" to the question:

DO YOU WANT TO PRINT THE DATA FILE?

Each logical record of the file named SYSNAM/TXT is printed, 80
characters per line, on whichever printer (local or servo) is
available. If a data record contains an embedded 015, it is
interpreted as carriage return. If a data record contains an
embedded 003, printing of the record will terminate prematurely.

0.2 Printing Forms

All forms associated with the system name will be printed if
the "A" parameter is placed in command line. If the form number
1s specified along with the system name, that form will be
printed. If no parameter or form number is supplied in the
command line, the operator must answer "NO" to the message "DO YOU
WANT TO PRINT THE DATA FILE". The message:

FORM NUMBER?

will be displayed. The desired form number should be entered- If
"A" is entered, all forms in the system will be printed.

Forms will be printed twice; once as the total imagye would
appear to the operator and again, one line at a time, followed by
the size of the field, and the TYPE, JUSTIFY, REQUIRED, and
PROGRAM edit criteria for each field.

CHAPTER 6. THE PRINT UTILITY 6-1

CHAPTER 7. INFORMATION FOR THE PROGRAMMER

7.1 The Edit Table

7.1.1 Edit Table Format

For each field defined by a form, a six char;cter.set of.edit
criteria is generated. This entry describes the field in detail,
as tollows: ’

Horizontal position
Vertical positon

Length of field

Position in output record
Edit key

Field program letter

The horizontal position (0-79) indicates the starting column of
the field in the screen image. The vertical position (0-11)
indicates the line of the screen image containing the field. The
information is used to display the field as well as to access data
stored in the form image for the field (i. e., constants)-.

The length of field is the number of characters the operator
may enter -- from 1 to 80. This number is associated at execution
time with the labels INPUT, OUTPUT and with field references in
field programs. ' :

The position in output record is actually an index (9—244)’
into the OUTPUT buffer. If the field is a "keyin" f}eld, i.e., no
data space is reserved, the position’s value is 0377. '

CHAPTER /. INFORMATION FOR THE PROGRAMHMER 7-1

. The edit key is a combination of bits indicating the edit
criteria set in the generator TYPE and REQUIRED passes. The bits
in the edit key have the following meanings:

716151 413]12]111]0]

NN N _alpha

\ \ \ Numeric Field
\ \ _______ No Keyin
\
\

\ ____ Right Justified
__ Zero Fill

\ _Numeric Digits

Fill Controlled

Required

The alpha and numeric digit bits are both set for the "mixed"
field type.-

The field program letter is set to binary zero if no field
program is assigned; otherwise, the actual ASCII letter is stored
in this character. The number of the last field in the screen
image (the first is zero) is used to determine the length of the
edit table. In addition, there is an 0377 stored after the last
entry in the edit table.

7.1.2 Work Area

During data entry, the six character set of edit criteria for
the current field is moved to a work area in the data page for
ease of referencing. The variables:

COLUMN
LINE
LENGTH
PSN
EDTKEY
USER

contain the six character set of edit criteria. The location
"SAVFLD" contains the current field number.

7-2 DISKETTE DATA ENTRY SYSTEM

7.1.3 Routines to Access the Edit Table

There are several subroutines available to access the set of
edit criteria. "EDTPNT" is the most basic subroutine. This
subroutine uses the value in the C-register to set the HL
registers to the addresc of the corresponding set of edit
criteria.

"MOVEDT" stores the field number at "SAVFLD", and moves the
corresponding set of edit criteria to the work area and into the
registers. It also positions the cursor to the field-.

"NEXT" and "LAST" use the field number at "SAVFLD" to access
the next or the preceding field. Both subroutines call "MOVEDT™.

7.2 Structure of the Form Ln Memory

7.2.1 Pointers
The torm 1s definea by a fixed set of pointers:

Linked form number

Field program pointers
Maximum field number

Edit table pointer
Data-write buffer pointer
Length of data record
Form line pointers

The variable "NEXTF" contains the number of the linked form
(000 if no 1link, linked form number +2 if a link is set), and the
variable "PAGE3" is the auto-link flag (0 or 0377).

For each possible field program four characters are reserved
starting at the label "USERA". The four characters are zero if the
corresponding program letter is not present. If a program is
present, whether retferenced or not, the first pair of characters
contains the "base address" to be used for all relative addresses
within the field program. The second pair of characters contains
the starting address of the program. (Note: All addresses are
stored MSB,LSB.) Unresolved program references contain an octal

377 in the first character.

The set of euit criteria is alwayc reterenceu via the address
pointer "SEDIT"; the requested field is always checked against the

CHAPTER 7. IWFORMATION FOR THE PRUGRAMMER 7-3

maximum field number, "EEDIT".
7.2.2 Data Buffers

The OUTPUT buffer is always in a fixed position "DATA" at the
end of all form pointers. Its length is defined by the variable
"LDATA". The OUTPUT buffer, to which the data is moved prior to
writing, is in a variable position. It is set at the end of the
data buffer, at a point defined by the length of the data
record+8. The address of the OUTPUT buffer is in "SMATCH". The
OUTPUT buffer is also used when performing FIND operations. The
data contained in the OUTPUT buffer is available to the operator
by means of the form data duplication function key (0).

7.2.3 Form Image

The compressed form is stored beyond the two output buffers
and it is referenced indirectly through the pointers starting at
the label "LINES". If the address in the table of pointers
starting at "LINES", corresponding to one of the twelve screen
lines, is zero, the corresponding line is to be blank on the
screen.

7.2.4 Edit Criteria Table

K The edit criteria table is generated beYond the compressed
form. The character immediately after the edit table terminator
(0377) is available for field programs.

7.2.5 Field Programs

When programs are attached to the form, blocks starting at
relocatable addresses are given absolute addresses based at the
first available space after the form edit table (the program base
address). Non-relocatable records from the field program (e.g.
COMMON), are simply passed through to the form file.

7.3 Subroutines Available in the Interpreter

7.3.1 DOS Facilities Available

The DOS interrupt handler and disk I/0 routines are
available. INCHL, DECHL and BLKTFR are also present. See the DOS
User’s Guide for descriptions and locations of the various
routines.

7-4 DISKETTE DATA ENTRY SYSTEM

7.3.2 Keyboard Input Routine

The interpreter contains its own keyboard input routine which
has two entry points. When the routine is entered at "KEYIN", the
edit type and length for the current field are applied to the
input. In addition, it is assumed that the corresponding area of
the form image is in the HL registers. This area is checked for
constants. If entered at "KEYINS", parameters are provided to
permit keyin of twenty characters with no edit restrictions. The
input is always stored in TEMP. .

7.3.3 Display Routine

The display routine also has two entry points, "DSPLYS$" and
"DSPLY". If the display routine is entered at "DSPLY", the cursor
position will be set to the bottom line of the screen and the
screen will be rolled up after the message is displayed. The
message must be terminated by an 015. If the .display routine 1is
entered at "DSPLYS$", the contents of DE will be used to position
the cursor and no rollup will take place at the end of the
display-

There are two special characters permitted in the display
input message: 023, which may appear only at the beginning of the
message (causing the screen to rollup one line); and 011 followed
by a count, which may appear anywhere in the message (indicating
space compression). In addition, binary zeros are converted to
underscores and spaces are not displayed at all (i. e., the cursor

is simply positioned to the right). The message being displayed is. -

always expanded into TEMP.

The routine called "REWRT" redisplays the form (with no
data) .

7.3.4 Form and Data Access Routines

The routine "GETADR" uses the contents of the variables "HP"
and "VP" to locate to positions in the form image corresponding to
the current field (this is where constants and semi-constants are
stored) . o . v

“GETDAT" sets HL to the address in the data buffer
corresponding to the current field. The B-register contains the
length of the field.:

"MOVEDT" uses the value in the C-register to access the edit
table entry corresponding to that field and moves the six

CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7-5

character entry to a work area for easy referencing. It also saves
the field number in the variable "SAVFLD".

. 7.3.5 String Arithmetic Package

The string arithmetic package used in DF1ll requires the
following parameters:

HL destination and field operated on
DE = operator (i.e., divisor)

the length of HL is in BLEN

the length of DE is in ALEN

The entry point for add is ADDS, for subtract is SUBS, for
divide is DIVS, and for multiply is MULS.

7.4 Assembly Language Interfacing and Overlays

7.4.1 Program Base Address

When the form generator outputs a form, it displays a
message:

PROGRAM BASE ADDRESS mmmm

The value, mmmm, is the decimal starting address of the form’s
programs. This information is of particular interest if assembly
language programs are to be included with the form. The technique
for utilizing this information is:

1. Generate a form and record the program base
address.

2. Generate and assemble the assembly language
program set at the program base address.

3. Compute the length (in decimal) of the
assembly language program.

4. Generate and compile the DF1ll program with a
labeled WORK statement the same size as the
assembly language program. (It may be
necessary to use two WORK statements since
the maximum reservable amount is 245
characters.)

5., Rerun the form generator. Enter OLD to
retrieve the form and OUT to write the form
with the DF1l program attached.

6. Use the DOS "APP" command to attach the

7-6 DISKETTE DATA ENTRY SYSTEM

assembly language program to the form:
APP <assembly>,<form>,<newform>
This form may now be used by the interpreter-v_v

NOTE: The assembly program and DF1l form should always be
appended in this order, since, during conversion to cassette
"systems, the extended interpreter and all subsequent code
are replaced by the cassette extended interpreter.

7.4.2 External References

Facilities are provided in the DF11l language to reference
points outside the program, locations which may be either in the
interpreter itself or in a separately assembled assembly language
program-. -

The EQU instruction assigns an address to a label which may
then be referenced by any of the branching statements in DF11
(GOTo, CALL, etc-). It this facility is used, the assembler return
instruction "RET" will return control to either the statement
after a CALL or to the NEXT point in the interpreter.

7.4.3 Returning to the Interpreter

A table of interpreter entry points is provided so that these
address may be accessed at the same point in future versions:

NEXTS EQU 06400
AGAINS EQU 06403
STORES EQU 06406
ENDS EQU 06411
WEOFS EQU 06414

To return to a field program after being called, the assembly -

language should simply return, "RET". Otherwise, a jump to the |
appropriate exit routine will return control to the interpreter.

7-4.4 Interpreter Data Areas

vVarious interpreter data areas may be needed by the assembly
language programs. The variable TEMP is the single item keyin
buffer and it is this area which is accessed when "INPUT" is
referenced in a field program. References to "INPUT" are compiled
as an address of 06000 and a length of zero. At execution time,
the length of the current field is substituted. OUTPUT, compiled

“ CHAPTER 7. INFORMATION FOR THE PROGRAMMER 7=7

as address zero and length zero, is resoived at execution time. It
is converted to the length and address in the data buffer of the
current field.

Labels defined in FIELD statements are compiled with lengths
of one and a special code in the MSB portion of the address. If
the MSB is 0370, the LSB represents an index to the field table
(i.e. the field number supplied by the programmer, minus one). If
the MSB is 0375, the LSB represents a displacement which, at
execution time, is added to the current field number in order to
resolve the length and address information.

NOTE: Referencing a field other than the current field does not
change the number of the current field.

Several variables in the interpreter may be useful to the
program. To access external data, i.e., data in the interpreter or
created by an assembly language routine, first EQU a label, then
REDEFINE the label, assigning it the proper length. For example,
the current field number (in binary, starting at zero), is at
location 06141. To test for field 5:

CURFLD EQU 6141

CURENT REDEFINE CURFLD,1,1

FLD5 WORK 04 ' ‘

TEST IF CURENT EQUAL FLD5 THEN XXXX

When the operator presses the ENTER key in the first position
of a field, the current data is at INPUT and is then passed to the
field program. The variable at location 06140, SAVNUM, contains a
flag which is 0 if no data was entered, and is non-0 if data was
entared. : :

7.4.5 Loading the Assembly Language Program

Since the format of a form and that of assembly code is the
same, an assembly language overla,; may be loaded by assigning it a
name of SYSNAMnn/DFF and then entering "LOAD nn".

Once the form and program have been tested, there are several
ways to put the system together: :

1) The assembly programvmay be cataloged as a separate
form and be loaded by either the operator or by a
field program.

2) The form and the assembly language program may be
appended together using the facilities of the DOS.

7-8 DISKETTE DATA ENTRY SYSTEM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

APPENDIX A. SAMPLE PROGRAMS

o= A

SAMPLE PROGRAM - MOVE SIGN FROM LEFT END TO RIGHT END

INSIGN
INREST
NXTFLD
SIGN
SPACE
MINUS

. INPUT TO
- SIGN AND

REDEFINE

REDEFINE

FIELD
FIELD
WORK
WORK

INPUT,1,1
INPUT,2,6
+1
+2

wow,
'

KEYIN ONLY FIELD; MOVE : o
STORE IN NEXT FIELD , .

IF
IF
NEXT
MOVE
MOVE
IF
MOVE
NEXT

NULL NE INPUT THEN MOVE1
NULL EQ NXTFLD THEN AGAIN

INREST TO NXTFLD

INSIGN TO SIGN ,
MINUS EQ INSIGN THEN NEXT
SPACE TO SIGN.

APPENDIX A. SAMPLE PROGRAMS

| I I
SIZE 6 1 1 6 1 6 1
TYPE D D
JUSTIFY R R
REQUIRED P P
PROGRAM K

SAMPLE PROGRAM - ARITHMETIC OPERATIONS ON FIELDS WITH SIGN ON RIGHT

LFT WORK 73

LFTSIGN REDEFINE LFT,1,1

LFTVALU REDEFINE LFT,2,6

MID WORK 7;

MIDSIGN REDEFINE MID,1,1

MIDVALU REDEFINE MID, 2,6

SUM WORK 73

SUMSIGN REDEF INE SUM, 1,1

SUMVALU REDEFINE SUM,2,6

ADD WORK Mg,

SUB WORK M-ty

MPY WORK nkM,

DIV WORK "/

SPACE WORK o

ZED WORK “ov;

VALU1 FIELD 1

SIGN1 FIELD 2

oP FIELD 3

VALU2 FIELD 4

VALU3 FIELD 6

SIGN3 FIELD 7

K* MOVE - INPUT TO QUTPUT
MOVE VALUl TO LFTVALU
MOVE SIGN1 TO LFTSIGN
MOVE VALU2 TO MIDVALU
MOVE INPUT TO MIDSIGHN
IF OP EQ ADD THEN ADD1
IF OP EQ SUB THEN SUB1
IF OP EQ MPY THEN MPY1

' IF OP EQ DIV THEN DIV1

CHANGE 3
AGAIN

ADD1 ADD MID TO LFT GIVING SUM

A-2 DISKETTE DATA ENTRY SYSTEM

susl

MPY1

DIV1
DONE

BLANK

GOTO
SUB-
GOTO
MPY
GOTO
DIV
MOVE
IF
MOVE
NEXT
MOVE
NEXT

DONE

MID FROM LFT GIVING SUM
DONE '

MID BY LFT GIVING SUM
DONE

MID INTO LFT GIVING SUM
SUMVALU TO VALU3

SUMSIGN EQ ZED THEKN BLANK
SUMSIGN TO SIGN3

SPACE TO SIGN3

APPENDIX ~A. SAMPLE PROGRAMS

A-3

< |
SIZE 6 7
TYPE D
JUSTIFY R
REQUIRED ; P

PROGRAM C

SAMPLE PROGRAM TO COMPUTE CHECK DIGIT (MOD 10)

COMBO WORK *0000000";

CKWORK REDEFINE COMBO,1,6

CKDIG REDEFINE COMBO, 7,1

NXTFLD FIELD +1

ONE WORK , "1

WEIGHT WORK "121212";

C* MOVE ! INPUT TO CKWORK
SUB CKDIG FROM CKDIG

Ccl1 IF . COMBO CK10 WEIGHT THEN C2
ADD ONE TO CKDIG ' .
GOTO (of |

c2 MOVE COMBO TO NXTFLD
STORE '

A-4 DISKETTE DATA ENTRY SYSTEM

MM DD

SIZE 2 2
TYPE D D
JUSTIFY R R
REQUIRED

PROGRAM G H

YY
|

JULIAN
- 1
2 3
P P

SAMPLE PROGRAM TO CONVERT TO JULIAN DATE

ADDER WORK
LEAPYR WORK
MONTH WORK
DAY WORK
HOLD ~ WORK
Kl WORK
K02 WORK
INDAY FIELD
INMO FIELD
JYR FIELD
JDAY FIELD
G* IF
: STORE
H* IF
\ - STORE
J* ALIGN
' LOOKUP
ADD
MOVE
IF
IF
ADD
STORE

"000'.,“031","059"’"090.“,“120"1"151":
lllBlll’|I212ll,l|243",|0273|l’"304","334"v

||7b|l’ '.80", ||84'l' ll8'8|l, |'92|| ' |I96'I
.‘01.' ’ |'12|l

"Oll.’ Il31ll

*000";

‘ll'l;

I|02 'l;

-1

-2

+1

+2

INPUT NIR MONTH THEN AGAIN
INPUT NIR DAY THEN AGAIN

INMO TO HOLD

HOLD IN ADDER GIVING JDAY
INDAY TO JDAY

INPUT TO JYR

INPUT NIT LEAPYR THEN STORE
INMO LE K02 THEN STORE

K1 TO JDAY

APPENDIX A. SAMPLE PROGRAMS

SIZE ' 30

TYPE M
JUSTIFY
REQUIRED
PROGRAM C

SAMPLE PROGRAM ILLUSTRATING CHARACTER CONVERSION

IN1 REDEFINE INPUT,1,1

INMOVE REDEFINE INPUT, 2,29

ALLOUT DATA 1,30

WK1 REDEFINE ALLOUT, 30,1

WKMOVE REDEFINE ALLOUT, 2,29

ASCII WORK "ABCDEFGHIJKL":
"MNOPQRSTUVWX":
"¥Z20123456789"

EBCDIC WORK 0301,302,303,304,305,306:

307,310,311,321,322,323:
324,325,326,327,330,331:
342,343,344,345,346,347:
350,351,360,361,362,363:
364,365,366,367,370,371

SINGLE REDEFINE EBCDIC,1,1

K29 WORK "29";

COUNT WORK "00";

KOO WORK "00";

K1 WORK "1iv;

c* MOVE K29 TO COUNT

Cl CONVERT IN1 BY ASCII AND SINGLE GIVING WK1
MOVE INMOVE TO INPUT
MOVE WKMOVE TC ALLOUT
SUB K1 FROM COUNT
IF K00 NE COUNT THEN Cl
NEXT

A-6 DISKETTE DATA ENTRY SYSTEM

SHIPPED TO
SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

ADDRESS
SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SAMPLE PROGRAM ILLUSTRATING ENTERING FIELDS "OUT

CALL
CHANGE
NEXT

CALL
CHANGE
NEXT

CALL
CHANGE
NEXT

MOVE
RETURN

I_. -
15

A
|
15

~

I B

2 2 2

D D D

R R R

0

SAVE

+1

SAVE

SAVE

INPUT TO OUTPUT

SHIPPED FROM

ADDRESS

APPENDIX A. SAMPLE PROGRAMS

OF ORDER"

- A-7

THIS IS THE FIELD
l

SIZE 15
TYPE

JUSTIFY R
REQUIRED

PROGRAM \"

SAMPLE PROGRAM TO ILLUSTRATE MODIFY MODE VERFICATION

QONE WORK "1

THREE WORK "3";

HOLD WORK " "3

COUNT WORK "0";

v IF RETRY EQ NULL THEN STORE
IF - INPUT EQ OUTPUT THEN OK
ADD ‘ ONE TO COUNT
IF » COUNT EQ THREE THEN TRY
MOVE INPUT TO HOLD
AGAIN :

TRY IF INPUT NE HOLD THEN ATTEMPT
MOVE INPUT TO OQUTPUT

OK SUB | COUNT FROM COUNT
NEXT

ATTEMPT SUB ‘ COUNT FROM COUNT
AGAIN :

A-8 DISKETTE DATA ENTRY SYSTEM

SIZE 7

TYPE N
JUSTIFY R
REQUIRED
PROGRAM A

o
SIZE 7
TYPE N
JUSTIFY R
REQUIRED 4
PROGRAM ' A
l_
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM A
S
SIZE -7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM a
P

"SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM A

0000.00
SIZE 7
TYPE
JUSTIFY :
REQUIRED p
PROGRAM

SAMPLE PROGRAM - TOTAL ACCUMULATION (FIRST STYLE)

APPENDIX A. SAMPLE ‘PROGRAMS

TOTAL

10

FIELD 6

SUB OUTPUT FROM TOTAL
ADD INPUT TO TOTAL
STORE

DISKETTE DATA ENTRY SYSTEM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY

REQUIRED

PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SAMPLE PROGRAM - TOTAL ACCUMULATION (SECOND STYLE)

BLANK
SUM

F*

WORK
FIELD

SuB
ADD
MOVE

5

OUTPUT FROM SUM
INPUT TO SUM
INPUT TO OUTPUT

APPENDIX A. SAMPLE PROGRAMS

MESSAGE BLANK
MESSAGE SUM
NEXT

A-12 DISKETTE DATA ENTRY SYSTEM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY -
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SAMPLE PROGRAM - TOTAL ACCUMULATION (THIRD STYLE)

ONE
TWO
THREE
FOUR
FIVE

Tz —

>

o2 g—

0000.00

FIELD

FIELD

FIELD
FIELD

FIELD

U W N

APPENDIX A;VSAMPLE PROGRAMS

A-13

Z*

Y*
CEXITI1

X*
EXIT2

W*

1

14

ADD
GOTO
ADD
ADD
GOTO
ADD
ADD
ADD
STORE
ADD
ADD
ADD
STORE

INPUT TO TWO GIVING FIVE
EXIT1

ONE TO INPUT GIVING FIVE
THREE TO FIVE

EXIT2 ‘
ONE TO TWO GIVING FIVE
INPUT TO FIVE '

FOUR TO FIVE

ONE TO TWO GIVING FIVE
THREE TO FIVE
INPUT TO FIVE

DISKETTE DATA ENTRY SYSTEM

SIZE 7

TYPE N

JUSTIFY R

REQUIRED

PROGRAM b
|

SIZE 7

TYPE N

JUSTIFY R

REQUIRED

PROGRAM Q
[

SIZE 7

TYPE N

JUSTIFY R

REQUIRED

PROGRAM R
|

SIZE 7

TYPE it

JUSTIFY R

REQUIRED

PROGRAM S
0000.00

SIZE 7

TYPE -

JUSTIFY

REQUIRED P

PROGRAM

SAMPLE PROGRAM TOTAL ACCUMULATION (FOURTH STYLE)

ONE FIELD 1
TWO FIELD 2
THREE FIELD 3
FOUR FIELD 4
FIVE FIELD 5
BLANK WORK " "

APPENDIX A. SAMPLE PROGRAMS A-1

Q*
EXITI1

R*
EXIT2

S*

EXIT3

A-16

ADD
GOTO
ADD

ADD
GOTO
ADD

ADD
ADD' ¢
GOTO '
ADD

ADD

ADD
MOVE
MESSAGE
MESSAGE
NEXT

INPUT TO TWO GIVING FIVE
EXIT1

ONE TO INPUT GIVING FIVE
THREE TO FIVE

EXIT2 ’

ONE TO TWO GIVING FIVE
INPUT TO FIVE

FOUR TO FIVE

- EXIT3

ONE TO TWO GIVING FIVE
THREE TO FIVE

INPUT TO FIVE

INPUT TO OUTPUT

BLANK

FIVE

DISKETTE DATA ENTRY SYSTEM

S5IZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZkE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

SAMPLE PROGRAM - TOTAL ACCUMULATION, CHECKING AGAINST KEYED IN TOTAL

FIRST
SECOND
THIRD
FOURTH
TEMP
SILVER

0000.00
7
N
R

0000.00

/
N
R

0000.00
7

N
R

0000.00
7
N
R

.0000.00

Ho W=

FIELD
FIELD
FIELD
FIELD
WORK
WORK

=W N

"0000.00";
"CORRECT";

APPENDIX ‘A-.SAMPLE PROGRAMS

A-17

GREEN

A-18

WORK
REDEFINE

ADD

ADD

ADD

IF

MOVE
MESSAGE
AGAIN
MOVE
MESSAGE
NEXT

"NOT CORRECT; 0000.00 IS CORRECT"
GOLD, 14,7 '

FIRST TO SECOND GIVING TEMP
THIRD TO TEMP

FOURTH TO TEMP

TEMP EQ INPUT THEN GREEN
TEMP. TO SHINE

GOLD

INPUT TO OUTPUT
SILVER

DISKETTE DATA ENTRY SYSTEM

COMMAND
CONSTANT
JUSTIFY
LINK

NEW

OLD

0S

ouT
PROGRAM

REQUIRE

REVISE

SEMI-CONSTANT

TYPE

INTERPRETER:

ADD

BACKSPACE

CONTINUE

DATA
END

FIND
HELP
LOAD
MODIFY
0Ss
REWIND
START

APPENDIX B. COMMANDS

SECTION
3.7.3

3.7.5
3.6

"3.10

3
3

MEANING
set constants into the form
set filler and justificatiqn

.define next form linkage

clear the work area for a

form

load old form from front deck
reload the DOS

write the current form to disk
assign program letters to
fields ,
set required, fill controlled,
or program reserved edit
criteria

revise the current form

set semi-constant data into the
form

set alphabetic or numeric

edit criteria :

add to the end of a data file
backspace a record on data file
add to the end of a data file
if the file is already open
switch to data entry mode

write an end of file on the
data file '
search for matching data record
display instructions

load the specified form

modify data records

reload the DOS

rewind data file _
initialize a data tape

APPENDIX B. COMMANDS B-1

APPENDIX C. INTERPRETER FUNCTION KEYS

Mode

All Data Entry

Modify and rind Only

APPENDIX

C.

Key Function
DISPLAY/4 return to monitor
DISPLAY/. write data record
‘ or rewrite it
DISPLAY/3 backward tab
DISPLAY/S delete record
DISPLAY/6 erase form data
DISPLAY/1 locad next form
DISPLAY/0 duplicate form
data ‘
DISPLAY/7 rewind data file
DISPLAY/S8 backspace record
DISPLAY/9 read record
INTERPRETER FUNCTION KEYS c-1

Backspace
Record
S~ This overlag 5 actual
size. You can copy the
Rewi ' e and et ovt the
thamd 7 Read Ptjzgp/a(a.-
, 8 9 Record| -
File
6 Erase
Monitor Form
‘ 4 5 | Data
| Load Back
Next | 2 3 Field
Form Tab
' Write o
. Data ----
o || DISPLAY
Record Delete (5) ——-
Field Duplicate (0)
DATAFORM Data Entry Functions - Use Display Key

DATA ENTRY COMMANDS VIA NUMERIC KEYBOARD

C-2 DISKETTE DATA ENTRY SYSTEM

APPENDIX D. FORM GENERATOR FUNCTION KEYS

The form generator has a set of special functions available
in the image generation mode only. When the DISPLAY key 1is
pressed, the number pad characters become function keys. The
following functions are available:

- character insert
- cursor up
- erase to end of screen
- cursor left '
character duplicate
- cursor right
- word remove
- Cursor down
- form expand (downward)
- character remove

- erase to end of line
CANCEL - return to monitor

S WO O
I

The BACKSPACE key and the cursor left function key have the
same function. Backspacing from column 1 back to column 80 is
permitted. All cursor movement with the special function Kkeys is
non-destructive.

The CANCEL key erases the entire line the cursor is on and
places the cursor at the beginning of the line.

The KEYBOARD key acts as a repeat key for all characters and
for most function keys-

The CANCEL function key returns to the form generator’s

monitor. The ENTER key places the cursor at the beginning of the
next lower line.

APPENDIX D. FORM GENERATOR FUNCTION KEYS D-1

NUMBER PAD OVERLAY

EY

| 1
]Cursor(8 !
e b
[|
| (5'
] .]
1Duplicate |
ECharacter;

]

Char-

s Erase
acter 7 8 9 Frame
Insert
....... - - - - -

Cursor Cursor
Left 4’ 6 Right

Ui

= ' -
Word | Form
Remove ' j 2 3 Expand

—— o o o] - R

' ' Erase
¢ ¢ Line

i i
t Character | Cursor

i Remove | Down :
' (#)} (23!

prn—— o - - -

’Z—#lis overlpy is actual
size. ‘You can copy
the psge and cut
ovt the template.

e e e

KEYBOARD

DATAFORM Form Generator Funcilions-UseDisplay Key

DISPLAY

Keyboara key Causes Repeat Function

FORM GENERATOR COMMANDS VIA NUMERIC KEYBOARD

DISKETTE DATA ENTRY SYSTEM

APPENDIX E. FORM

220w

0
S
CANCEL

GENERATOR TYPE, JUSTIFY AND REQUIRE LoIT
CRITERIA '

MEANING

Alpha (A - Z and space)

Digit (0 - 9) , -

Mixed alpha and numeric

Numeric (0 = 9, decimal point, and leading
minus)

Numeric, minus overpunch

Shift key inversion

Clears edit criteria

Numeric ftields are limited to 16 places of significance to

the left and 8 places

JUSTIFY
J
Z
R

REQUIRE

R
F

U o

>R

to the right of the decimal point.

MEANING
Right justitfy
Zero fill
Zero fill
Right justify

MEANING

Required (1 character necessary)
Fill controlled (all characters
necessary) ‘

(ENTER key allowed only to bypass
field)

Both fill controlled and required
Program reserved (no keyin)
Required and program reserved
(field is checked prior to write)
Keyin continuous '

Keyin continuous and required

APPENDIX K. FORM GENERATOR TYPE, JUSTIFY AND REQUIRE EDIT CRITERIA

APPENDIX F. ALPHABETICAL LISTING OF STATEMENT TYPES

APPENDIX

NAME

ADD
AGAIN
ALIGHN
BACKSPACE
BEEP

CALL
CHAIN
CHANGE
CLOSE
COMMON
CONVERT
DATA
DELETE
DIVIDE
END
ENTRYMODE
EQU
FORMSHOW
FIELD
FIELDNO
GOTO

IF CK10

SECTION

.
.

.
.
.

.
NN PO

« e
«
.
o

.
—
o

. . .
. . .

.
w

. . .
.
.

IF
IF
IF

LIF

IF

IF

IF¥
IF
IF
IF
IF

CK1l1
INT
NIT
INR
NIR
EQ
NE
GE
LE
GREATER
LESS

INPUT
LOOKUP
MESSAGE

.
.
L= -

MODIFYMODE
MOVE
MULTIPLY
NEXT

F. ALPHABETICAL

.
w

LT S R R S S R S Y S N . T T i S A e S S A A N T T B S Y St S o
. . 5._.:_0 .

LISTING OF STATEMENT TYPES

F-1

F-2

NULL
OUTPUT
PEOF
READ

REDEFINE

RESERVE
RESET
RETRY
RETURN

SET

SHOW
STORE
SUBTRACT
WEOF
WORK
WRITE

DISKETTE DATA ENTRY SYSTEM

QT QI N N QY QI ST SO SO N NG N G N N
. . . [.] . . . £] [}) [] L] L] L]

AU AT RA IO O ~J ~J

& e o e o 2 e s 6 & ° e e & s @
BB NOB R UIDOo R O R & O
. . LI} . . .

~J oo i 0

—

.
(e)]

LABEL

TEMP
COLUMN
LINE
LENGTH
PSN
EDTKEY
USER
SAVNUM
NEWOLD
FORMNO
CURT
ADFLAG

NEXTF
PAGE3
BASE

NEXT$
AGAINS
STORES
ENDS
WEOFS$
ERASES
DELETS
ENTERS

APPENDIX G. INTERPRETER FLAG ADDRESSES

LOCATION

06000
06130
06131
06132
06133
06134
06135
06140
061453
06146
06156
06306

oolol
06l62
06163

06400
06403
06406
06411
06414
06417
06422
06425

DESCRIPTION

"INPUT buffer
edit entry - horizontal position
vertical position
field length
position in OUTPUT
edit criteria
program letter
number chars entered (0 is ENTER pressed)
I/0 mode/status word
current form number +4 (in blnary) ,
address of next Dataform instruction
=0 if START, #0 if ADD

Link form number +4 (in binary)
Auto link flag
Program base address

Transfer to NEXT
Transfer to AGAIN
Transfer to STORE
Transfer to END
Transfer to CLOSE
Erase function key
Delete function key
Re-enter form

APPENDIX G. INTERPRETER FLAG ADDRESSES

G-1

APPENDIX H. COMPILER ERROR MESSAGES

NAME REQUIRED

The name of the program source file must be typed in the intial
command line. :

BAD LABEL INITIATOR

A character that was neither a decimal point nor a plus nor a
space nor alphanumeric appeared in column 1 of the input line.

INVALID OCTAL

The character string pointed to by the star contains a character
which is not in.the set 0-7.

ILLEGAL OPERATOR

Something other than the accepted statement types was the first
nonblank symbol after column 1 (or after the label, if one
exists) .

NUMBER FROM 1-249 EXPECTED

The indicated symbol is non-numeric, or if numeric, not in the.
specified range.

COMMA EXPECTED

The symbol after the first number in a DATA statement was not a
comma - :

FIELDZ2 IS LESS THAN FIELD1
In a DATA statement, the second field is less than the first.
LABEL REQUIRED

The DATA, REDEFINE and WORK statements all require a labpel.

APPENDIX H. COMPILER ERROR MESSAGES H-1

DOUBLE QUOTE ASSUMED

A pre-defined constant (either in WORK or COMMON statements)
should be terminated by a double quotation mark. If it is not
there, it is assumed. '

ILLEGAL LITERAL AR

In a table, every item enclosed in double quotation marks must be
of equal length. Those that are of different length than the
first item are flagged in error.

IMPROPER CONTINUATION

If a COMMON or WORK table is continued from a line, the following
line must have a blank in column one, and the first symbol on the
line must be a double quotation mark. If either of these is not
the case, the continuation is an improper one.

UNDEFINED LABEL

A label is referenced which is neither one of the eight
pre-defined labels, nor defined elsewhere in the program.

MISSPELLED WORD
A specific reserved word -- for example, the TO in an ADD
statement -- has been misspelled. The misspelled word is assumed

to be the one expected, and the next symbol is expected to be a
iegal label.

ILLEGAL CONDITION

The connective in an IF statement is not acceptable.

DUPLICATE LABEL

The label beginning the line listed is duplicated previously in
the program (or it is one of the eight pre-defined labels). The
second (and any subsequent) definitions of the label are ignored.
MAXIMUM LABELS REACHED

The maximum number of labels allowed by the compiler is fixed at

246, excluding the pre-defined labels. All labels after this
maximum is reached are ignored.

H-2 DISKETTE DATA ENTRY SYSTEM

COMMON LIMIT EXCEEDED

The COMMON block may not exceed 100 characters or the RESERVE
amount. Anything defined as COMMON after this length will not be
accepted- ’

COMMON PRECEEDS RESERVE

A RESERVE statement was encountered after a COMMON statement.
Since RESERVE changes the starting address of COMMON, the RESERVE
statement must come before all COMMON statements. :

PROGRAM COUNTER ERROR'

The program counter, at the end of pass two does not equal the
program counter at the end of pass one. This is an internal
compiler error message.

APPENDIX H. COMPILER ERROR MESSAGES H-3

COMMON SYSTEM ERRORS

FILE MISSING or FORM MISSING

The form number specified is not present as
SYSNAMnn/DFF.

In the interpreter, this message may mean that

the next form specified (in the current form’s

link) is not present, or that a command assumes
that there is a form in memory (e.g. DATA) and

none is loaded.

NAME REQUIRED ;
The initial command line did not include the
system name or form name required by the
program.

ILLEGAL DEVICE SPECIFICATION
The initial command line included a disk drive
specification which was improperly formatted.

BAD NUMBER
The form number may have been omitted, out of
range (1-99), non-numeric, or, the form
specified is not in the disk directory as
SYSNAMnn/DFF. Note that if the form number is
omitted in a command which optionally accepts
form numbers (e.g. START [n]) the command line
cannot end with a space.

PRINT UTILITY
BAD SYSTEM HAME
The name appearing on the command line was
greater than 6 characters in length.

NO PRINTER
No printer is connecteu cr turned on.

H-4 DISKETTE DATA ENTRY SYSTEM

GENERATOR ERRORS

BAD FORM NAME

BAD FORM

NO FIELDS

The form name specified in the command line did
not end with a two digit number.

The form in memory cannot be written out, or
have any pass except REVISE executed, because
o0f some error condition.

DEFINED
Every form must contain at least one field
(this field may be a keyin only field).

NO ROOM FOR CONSTANTS

MORE THAN

MORE THAN

XXX DATA
YYY BYTES

YYY BYTES

Constants and semiconstants can only be
assigned to fields of a form which were
initially defined using the underscore (as
opposed to the caret). This message is
displayed if no constants can be assigned.
126 FIELDS

During image generation more than 126 data
fields were defined. The form must be revised
before it may be written out.

249 DATA

During image generation more than 249 data
characters were defined. The form must be
revised before it may be written out.

LEFT ,
The messages appear immediately after the 1mage_
generation phase of form generation. They are

for information only. -

OVER

If this message appears after image generation,
the form image, data area and edit table have
combined to overflow the user space. Something
must be reduced.

PROGRAM BASE ADDRESS XXXXX

This is the decimal Address of the first
location in user space available for program
code.

APPENDIX H. COMPILER ERROR MESSAGES H-5

PROGRAM x MISSING

A program specified in the program pass is not
contained in the program file (or there is no
program file at all).

H-6 DISKETTE DATA ENTRY SYSTEM

INTERPRETER ERRORS

Continuous Beeping during data entry
An unacceptable constant has been defined at
form generation time. The constant must be
reset to conform with the edit criteria before
proceding. '

Continuous Clicking during data entry
An all constant form with no keyin field has
been loaded. The form must be corrected before
data entry may proceed-. ’

SELECT DATA MODE
No START, ADD, MOD or FIND command has been
executed. : '

END OF DATA
End of file has been reached on the data file.

DATA FILE OPEN
An open type operatlon was attempted before
ending the current data file.

DATA FILE CLOSED
A close type operation was attempted before
opening the current data file.

NO FIELDS .
A form with no fields has been loaded.

NO LINK SET
The operator attempted to load the linked form
and no link was set.

ILLEGAL OP CODE

An unacceptable DF1ll op code was encountered
during the execution of a field program.

APPENDIX H. COMPILER ERROR MESSAGES H-7

APPENDIX I. USER SPACE REDUCTION TECHNIQUES

Use carets (7) in field definitions (remember they are
compressed in the form image (not the data record) while
underscores (_) are not).

Place semi-colons at the end of all non-table, non-range
variables to suppress the end-of-table character.

Use REDEFINE to create constants or tables which are subsets
of other constants or tables. This technique may also be used
for computation or hold areas if the redefined variables are
not needed at the same time.

Use suproutines to perform repeated operations.

Use field displacement referencing to generalize programs used
with line-items (i.e., where the same set of fields is entered
several times within one form).

Use INPUT, OUTPUT and RESET to generalize programs and thus
avoid duplication of code.

Keep constants in the form itself (by defining'them at form
generation time) instead of using a field program to set them.

Compine several fields into one wherever possible (each field
requires 6 additional characters of edit table).

Use LOOKUP instead of CONVERT to save one of the tables.

Use data areas as work areas whenever possible, thus saving
intermediate hold areas. '

Execute all programs on last field if p0551b1e to save NEXT
and STORE instructions.

Avoid CHANGE/SHOW/CHANGE as a series of instructions. Keep in
mind that fields declared "program reserved" will show up on
the screen in the;r sequence although the operator cannot
keyin to them.

APPENDIX I. USER SPACE REDUCTION TECHNIQUES I-1

APPENDIX J. SAMPLE FORM GENERATION

Sample Form -- During NEW or REVISE Pass

Form text, data, and keyin only field definitions are set in
either the NEW or REVISE pass. If no constants or
seni-constants are added, this is the way the form text will
look during data entry except that the carets will be
replaced by spaces.

EMPLOYEE PAYROLL RECORD

Name |~""7 " Tntnafafaffanananannnnn Title Code | Dept |~
Dependents |~ State Code | Social Security {~7}°7°77
Exempt/Nonexempt (0/1) i Workman's Compensation (0 to 9) |
Married/Single (0/1) H Male/Female (0/1) |
Hourly Rate $!°"""" Amount Last Increase $!°"""" Date Last Increase $}“":::
Date Hired |t Date Terminated |°°°7"7 . Date of Birth 1T
State Tax jomnen Disability Tax |°°°"°7 City Tax oo
Insurance AR Auto Insurance |°7°77 Life Insurance |~°°°
Advance | FICA Status (exempt=0, nonexempt=1) | Page 2? <
APPENDIX J. SAMPLE FORM GENERATION J-1

Sample Form -- During TYPE Pass

The field type edit criteria are set in the TYPE pass. Edit
criteria will not be displayed during data entry.

EMPLOYEE PAYROLL RECORD

Name A
Dependents D State Code D
Exempt/Nonexempt (0/1) D

Title Code D Dept D
Social Security D D
Workman's Compensation (0 to 9) D

Married/Single (0/1) D

Hourly Rate $N
Date Hired D

Amount Last Increase $N

Male/Female (0/1) D
Date Last Increase $D

Date Terminated D Date of Birth D

State Tax N Disability Tax N City Tax N
Insurance N Auto Insurance N Life Insurance N
Advance N FICA Status (exempt=0, nqnexempt=1) D Page 27 A
J-2 DISKETTE DATA

ENTRY SYSTEM

Sample Form -- During JUSTIFY Pass

Right justification and field fill character are set in the
Justify pass. Edit criteria will not be displayed during

data entry.
EMPLOYEE PAYROLL RECORD.
Name | Title Code J Dept J
Dependents | State Code J Social Security | |
Exempt/Nonexempt (0/1) i Workman's Compensation (0 to 9) |
Married/Single (0/1) ! Male/Female (0/1) |
Hourly Rate $R Amount Last Increase $R Date Last Increase $Z
Date Hired A Date Terminated Z Date of Birth Z
State Tax R Disability Tax R City Tax R
Insurance R Auto Insurance R Life Insurance R
Advance R FICA Status (exempt=0, nonexempt=1) | Page 27 <

APPENDIX J. SAMPLE FORM GENERATION ‘ J-3

Sample Form -- During SEMI-CONSTANT Pass

Several fields are preset to commonly entered values in the
SEMI-CONSTANT pass. These may be accepted or rejected by the

operator during data entry. The CONSTANT pass looks the ¥
same; however, constants may not be rejected during data
entry.)

EMPLOYEE PAYROLL RECORD

Name | Title Code | Dept |
Dependents | State Code 42 focial Security | |
Exempt/Nonexempt (0/1) 1 Workman's Compensation (0 to 9) |
Married/Single (0/1) 0 dale/Female (0/1) 1
Hourly Rate §$| Amount Last Increasze $| Date Last Increase $|
Date Hired i Date Terminated | Date of Birth i
State Tax] Disability Tax | City Tax |
Insurance ! Auto Insurance | Life Insurance |
Advance | FICA Status (exempt=0, nonexempt=1) 1 Page 2?7 <

J-4 DISKETTE DATA ENTRY SYSTEM

Sample Form -- During REQUIRED Pass

Required, fill controlled, and program reserved edit
criteria are set in the REQUIRED pass. Edit criteria will
not be displayed during data entry. :

EMPLOYEE PAYROLL RECORD

Name R Title Code B Dept B
Dependents B State Code F Social Security R R
Exempt/Nonexempt (0/1) F Workman's Compensation (0 to 9) F
Married/Single (0/1) B Male/Female (0/1) B
Hourly Rate $X Amount Last Increase $X Date Last Increase $F
Date Hired B Date Terminated F Date of Birth F
State Tax X Disability Tax R City Tex R
Insurance | Auto Insurance | Life Insurance |
Advance | FICA Status (exempt=0, nonexempt=1) B Page 2?7 <

APPENDIX J. SAMPLE FORM GENERATION J-5

Sample Form -- During PROGRAM Pass

Field program names are set in the PROGRAM pass. Program "A"
checks range 0-1; "B" checks range 0-9; "D". checks for valid
dates; and "X" checks for a "I" or "N" to determine if
another form should be loaded. Program names will not be
displayed during data entry.

EMPLOYEE PAYROLL RECOEKD

Name | Title Code ! Dﬂpt !
Dependents | State Code | Social Security |
Exempt/Nonexempt (0/1) A Workman's Compensation (0 to 9) B
Married/Slngle (0/1) A Male/Female (0/1) A
Hourly Rate $§| Amount Last Increase §$| Date Last Increase $D
Date Hired D Date Terminated D Date of Birth D
State Tax ! Disability Tax | City Tax i
Insurance i Auto Insurance | Life Insurance |
Advance | FICA Status (exempt=0, nonexempt=1) A Page 2?7 X

J-6 " DISKETTE DATA ENTRY SYSTEM

DATAPOINT PRINTING SERVICES 76

