
DISKETTE DATA
ENTRY SYSTEM

DF11SYS
User's Guide

Version 2

March, 1976

Model Code No. 50135

DATAPOINT CORPORATION

The Leader in
Dispersed Data Processing

COPYRIGHT~ 1976 BY DATAPOINT CORPORATION. PRINTED IN U.S.A.

PREFACE

OFll provides a personalized data entry system for use on any

OATAPOINT processor and diskette. OF!! is intended primarily to

support generation of data entry systems on diskette. OFll

contains more features and greater capabilitie~ than OATAFORM 2

contained.

Forms" are created for display on the processor's screen,

anu the data entry operator then simply fills in the form. The

<.l(lta is then recorU8(J, (lnd at any time maY be ·retrieved and

reviseu using the same form to view and edit the recorded data.

Each "form" is custom designed, and editing criteria are

assigned to the data fields on the fom at the time the form is

generated. Programs written in the high level OF11 language may

also be assigned at this time. Forms and progrcims are then

combined ana become a unique OF11 system.

Three stages of development are involved in generating a

system: theeuitor and compiler are useJ to create fi.eld programs;

the form yenerator i.s used to create forms; and the data entry

interpreter is useJ to control data entry." Additionally, the print

uti lity provides a hard copy listing of the ·jata tile, form

i

images, or .both

Since DF 11 uses standardized data record forma ts, fUrther

processing of the data can proceed under any OATABUS, BASIC, or

~PG program. Additionally, anyone of a number of av~ilable

communications programs or terminal emulators (including DATAPOLL

. and EM·2780) may be used to transmit DF11 data files for fUrther

processing at remote sites.

Chapter 1 should provide as much intorma tion about OF 11 as is

necessary for those familiar with both the cassette Version of

DATAFORM and DOS. Chapter 2 provides a more general description of

DFll, and continuing chapters descr tbe forms genera tion and da ta

entry using the forms. The DOS User's Guide, model number 50127,

provides more information about the DOS.

ii

Throughout this manual, a field appearing between pOinted

brackets, as:

<filename>

denotes a:r§9lJix.s1.Q field; whereas, a field appearing between

square brackets, as:

[, filename]

uenotes anQJ2tiQl)C!l field, whose use is explaine,d in subsequent

uiscussion.

Ve,rsion 2 of DF11 contains the following'changes'from version

1 of DF 11:

1) The execution of the CLOSE statement has ch~nged.

2) The S type edit criteria has been added to suppress

shift key inversion.

3) The interpreter's START command displays the name

of the data file.

4) The default data file extensibn is TXT.

~) Keyin over-run is 'prevented.

b) Data tile OVERFLOW action has chanyed.

7) DFll interpreter now uses only 251 characters in a

iii

disk sector, rather than 253. This means that the

version 1 interpreter must be used with version 1

data files; and the version 2 interpreter must,be

used with version 2 data files.

8) The HELP commana is no longer in the form

generator.

To convert DF11 version 1 systems to DFll version 2 systems,

each field program should be re-comp~led, and each form should be

re-generated.

iv

TABLE OF CONTENTS .

1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM
1.1 Installing the Diskette DATAFORM System
1.2 System Names
1.3 Program Gener~tion

1.3.1 Program Source File Creation
1.3.2 Program Compilation

1.4 Form Getieiation
1.5 Form Testing and Data Entry
1.6 Using DFll with. CHAIN
1.7 DF11 Compatibility

2. GENERAL DATAFORM TERMS AND CONCEPTS
2.1 What is a FORM?
2.2 What is a FIELD PROGRAM?
2.3 U~et Space and How It~s Allocated
2.4 :~ome Udta I::ntry Fedtures

J. 'l'Ul:!: FOJ{lVJ GENERATOR
3.1 Data.Field
3.2 Keyin Only Field
3.3 User Space
3.4 Form Horksheet
3.5 The NEW Command

3.5.1 Repeat Key (KEYBOARD)
·3.5.2 Cursor Movement Function Keys (2,4,6,8)
3.5.3 Character Insert Function K~Y (7)
3.5~4 Character Remove Function Key (0)
3.5.5 Erase Function Keys (1,.,9)
3.5.6 Lina Insert Function KeY (3)
3.5.7 Duplicate Character Function Key (5)
3.5.8 RetUrn to Monitor Functiori ~ey (CANCEL)

3.6 Assignment of Edit Criteria
3. 6.1 The TY PE Pa s s

3.G.l.l Alphabetic (A)
3.6.1.2 Digit (D)
3 . 6 . 1 . 3 N ume ric (r~)

3.6.1.4 Mixed (M)
'3.6.1.5 Numeric Minus-overpunch (0)
3.6.1.6 Shift Key Inversion (5)

3.6.2 The REQUIRE Pas~
J.6.2.1 Required (R)
3.6.2.2 Fill Controlled (F)
J.~.2.J Required and Fill Controlled (B)

v

page
1-1
1-1
1-1
1-2
1-2
1-2
1-3
1-4
1-5
1,...6

2-1
2-1
2-2
2-4
2 -~)

J-1
3-1
3';'2
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3 6
3-7
3-7
3,...8
3-8
3-9
3-9
3-9
3-9
3-9

3 -10
3-10
3-10
3-10
3-11

3.6.2.4 Program Reserved (P)
3.6.2.5 Required and Program Reserved (S)
3.6.2.6 Keyin Continuous (K)
3.6.2~7 Required and Keyin Continuous (X)

3.6.3 The JUSTIFY Pass
3.6.3.1 Right Justify (J)
3.6.3.2 Zero Fill (Z)
3.~.3.3 Right Justify and Zero Fill (R)

3.6.4 The SEMI -CONSTANT and CONSTANT pa sse s
J.6.5 The PROGRAM Pass
3.6.6 The LINK,Pass

3.6.6.1 Setting a Manual Link
3.6.6.2 Setting an Auto Link
3.6.6.3 Clearing a Link

3.7 The OUT Command
3.8 The REVISE Command
3.9 The OLD Command
3.10 The OS Command

4. THE COb1PILER
4.1 Labels
4.2 Flelu Program Names
4.3 Spaces
4.4 Comments
4.5 Specification Statements

4.5. 1 DATA
4.5.2 WORK
4.5. 3 COMf-10N
4. 5.4 RESERVE
4.5.5 EQU
4.5.6 REDEFINE
4.5.7 FIELD

4.6 Executable Statements
4.6.1 Transfers of Information

4.6.1.1 ALIGN
4.6.1.2 CONVERT
4. 6. 1. 3 F IELDNO
4.6.1.4 LOOKUP
4.6.1. 5 MOVE
4.6.1.6 SET

4.6.2 Ad~# Subtroct, Multiply, Divide
4.6.3 The If Statement
4.6.4 Output Control

4~6.4.1 BEEP
4.b.4.2 CHAIN
4.6.4. 3 FORLIIlSHmv
4.6.4.4 MESSAGE
4.6.4.5SHOVl

vi

3-11
3-11
3-11
3-11
3-11
3-12
3-12
3-12
3-12
3-13
3-13
3-14
3-14
3-14
3-15
3-15
3-16
3-16

4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-4
4-6
4-7
4-7
4-8
4-9

4-10
4 -1 0
4-10
4-11
4-11
4-12
4-12
4-12
4 -13
4-14
4-15
4-16
4 -16
4-16
4-17
4-17

4.6.4. 6 Y~RITE
4.6.4.7 HEOF
4.6.4.8 READ
4.6.4.9 BACKSPACE
4.6.4.10 DELETE
4.6.4.11 PEOr

4.6.5 Transfers of Control
4.6.5.1 GOTO
4.6.5.2 CALL and RETURN

4.6.6 CHANGE and RESET
4.6.7 MODIFYMODE and ENTRYMODE

4:7 Pre~defined Labels
4./.1 AGAIN
4.7.2 CLOSE
4./.3 END
4.7.4 INPUT
4.7.5 NEXT
4.7.6 NULL
4.7./ OUTPUT
4.7.8 RETRY
4.7.9 STORE

.4.8 Program Generation
4.8.1 Editing a Source Program
4.8.2 Campi 1 ing a Source Program
4.8.3 Printlng a Compilation Listing
4.8.4 The Program File

4~9 Program Execution
, 4.9.1 Post-process Execution

4.9.2 Operator Tibbing
4.9.3 Pre-process Execution
4.9.4 Program Reserved Fields
4.9.5 Form Constants

5. THE INTERPRETER
5.1 The START· Command
5.2 The ADD Command
5.3 The CONTINUE Command
5.4 The LOAD Command
5.5 The DATA Command
.5~6 Revising an Existing Data File

5.6.1 The MODIFY Command
5.6.2 The FIND Command
5.6.3 Rewriting Existing Records

5./ The BACKSPACE Command
5.8 The RE'WHND Command
S.9 The END Comman~
5.10 The OS Command
5.11 The HELP Command

.vi i

4-18
4-18
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4"':21
4-21
4-22
4-22
4-23
4-:-23
4-23
4-2J·
4-23
4-23
4-24
4-24
4 -2 4
4-24
4-25
4-26
4-26
4-26
4-26
4-27
4-27
4-27

5-1
5-.3
5-3
5..,.4
5,...4
5-4
5-5
5-5
5-6
5-6
5:...7
5-:7
5-7
5-8
5-8

5.12 Data Entry Actio~
5.13 Interpreter Function Keys

5.13.1 The Form Data Duplicate Function Key eO)
5.13.2 The Load Ne:xt Form ,Function Key (1)
5.13.3 The Backspace, Field Function Key (3)
5.13.4 The Return to Monitor Function Key (4)
5.13.5 The Form Da ta Era se' Function Key (6)
5.13.6 The RewlndData File Function Key (7)
5.13.7 The Backspace Record Function Key (8)
5.13.8 The Read Record Function Key (9)
5.13.9 The Write aecord Function, Xey (.)

5.14 Logical and Physical Dat~ Records
5.1 5 Da ta file and OVERFLm~

6. THE PRINT UTILITY
6.1 Prirtting Disk Data Files
6.2 Printing Forms

7. INFORMATION FOR THE PROGRAMMER
7.1 The Edit Table

7.1.1 Edit Table Format
7.1.2~~ork Area
7.1.3 Routines to Access the Edit Table

7.~ Structure of the Form in Memory
7.2.1 Pointers
7.2.2 Data B~ffers
7 • 2 . 3 Form I ma g e
7.2.4 Edit Criteria Table
7.2.5 Field Programs

7.3 Subroutines Available in the Interpreter
7.3.1 DOS Facilities Available
7.3~2 Keyboard Input Routine
7.3.3 Display Routine
7.3.4 Form and Data Access Routines
?3.5 String Arithmetic Package

'7.4 Assembly Language Interfacing and Overlays
7.4.1 Program Base Address
7.4.2 External References
7.4.3 Returning to the Interpreter
?4.4 Interpreter Data Areas
7.4.5 Loading the Assembly Language Pl"ogram

Appenuix A. SAl"IPLE PROGRAlJ.lS

Appendix B. COMMANDS

Appendix C. INTERPRETER FUNCTION KEYS

viii

5;;'8
5-9
5-9
5-9

5-10,
5-10
5-10
5-10
5-10
5-11
5-11
5,..11
5-12

6-1
6-1
6-1

7-1
7 -1
7-1
7-2
7-2
7 -3
7-3
7-3
7-4
7 -4
7-4
7-4
7-4
7-4,
7-5
7-5
7-5
7-6
7-6
7-7
7 -7
7-7
7-8

Appendix D. FORM GENERATOR FUNCTION KEYS

Appendix E. FORM GENERATOR TYPE, JUSTIFY AND REQUIRE EDIT
CRITERIA

Appenaix F. ALPHABETICAL LISTING OF STATEMENT TYPES

Appendix G. INTERPRETER FLAG ADDRESSES

Appenaix H. COMPILER ERROR MESSAGES

Appendix I. USER SPACE REDUCTION TECHNIQUES

Appendix J. SAMPLE FORM GENERATION

ix

CHAPTER 1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM

1.1 Installing the Diskette DATAFORM Sys"tem

DF1~ is released on a flexible"diskette, listed in the
software catalog as DF11SYS.

The following files are included on the DF11SYS release diskette:

DF11CMP/CMO
OF l1GEN/Cl"lD
OF 11PRT/CMD
DF11/ClVID
DF11/0V1
COPYOF/TXT

DFll program compiler
DF11 form generator
DF11 print utility
DF11 interpreter
"HELP" overlay
chain file to copy the OF1! system

Adaitionally, the following DOS~C commands are necessary.
They shoula be oetained from the latest release Of DOS.C.

CHAIN/CMD
.cHAIN/OV1
COPY/CMO
EOIT/CMD

Immediately upon receipt of the DF11SYS release diskette,
several copies should be made for backup purposes. This is
accomplished by placing the release diskette in drive zero,
placing a DOS.C system diskette in drive one, placing a DOSGEN'ed
diskette in drive two, and entering:

CHAIN COPYDF ;TO #2 # "

1.2 System Names

OFll utilizes a concept called a USystem Name" (which is
abbr~~iated "SYSNAM"). SYSNAM is a one to six character alphabetic
name. All forms in a system," i. e. forms tha t are to be used
together; should be assigned the same system name followed by a 2
aigit number. Programs to be used with a particular form should be
assigned the same system name and number as the form. The program
source, file (as createu by EDIT) will have an ex"tension of "TXT",
the compiled" piog ram object f lIe (as crea ted by OF 11ClVIP)wl11 have
an extension of "OFP", anu the form (as created by DF11GEN) will

CHAPTER 1. A QU ICK GUIDE TO THE DISKETTE OATAFORtJl SYSTErVI 1-1

have an extension of "OFF" (SYSNAMilh/OFF). The initial cata file
(as created by DF11) will have the name anc. extension
"SYSNAM/TXT" •

The f il e extensions mentionea. above are created and
maintained by the particular program being run (EDIT, DF11CMP,
DFI1GEN, and DF11). They should not be changed.

1.3 Program Gene.ra tion

1.3.1 Program Source File Creation

To generate a program .. enter:

EDI'f <SYSNAI'1nn> iO

where "SYSNAM" is the name of thes,ystem of forms and "nn" is the
2 digit number of the form with which the program(s) will be used.
A file named SYSNAMnn/TXT will be created. The "iO" on the command
line causes DF11 tab stops to be used.

Hhen all program statements have been entered, and the EDIT
ha s been termina ted by uS'e of the ": E" command, the program
statements are recorded, andthe'DOS is reloaded. See the chapter
on EDIT in the DOS User's Guide f6r EDIT commands and further EDIT
parameterization.

1.3.2 Program Compila tion

To compile a program, enter:

DF11Cl"'lP <SYSNALv1nn> [,objectfile] [iparameters]

The compiler icentifies itself with the sign on message:

DF11 COMPILER 2.n - ddmmmyy

The compiled object coce is placec in the [objectfile]. The
default {o,bjectfile) name is the same as the name of the source
file. The default [objectfile] extension is "DFP·'. Parameters may
be entered at the time the compiler is executed. The parameters
are separated from the [objectfile] name (if a name is present) by
d semi-colon. If only a semi-colon is entered, the compiler
assumes that no listing is to be printed. If the letter "L"
appears after the semicolon, a listing without code will be
generated. If the letters ilL" and "C" both appear after the

, 1-2 DISKETTE DATA ENTRY SYSTEM

semicolon, a listing with code will be generated. If the letter
"P" appears after the semicolon, a printer image file will be
generated on the disk. If "P" and "C" appear, generated cod~ will
be included in the printer image fiie. The printer image file will
be given the name "SYSNAMnn/PRT". This file may be printed or
viewed on thesc reen with the DOS LIST utility. See the chapter on
LIST in the DOS User's Guide for LIST parameterization.

If no parameters are entered, and a printer is on line, the
messages:

LIST OH LOCAL/SERVO PRINTER?
and

LIST CODE TOO?

must be answered.

1.4 Form Generation

To generate a form enter:

OF lIGEN < input form> l , output form] L obj ectprog rand

The generator identifies itself with the sign-on message:

DF1! GENERATOR 2.n - ddmmmyy

The <inputform> name must·be in "SYSNAMnn" format. The
default [,outputform] name is the same as the <inputform> name.
The defaul t [, objectprogramJ name is the same as the [outputform]
name, but with a default extension bf "DFP~.

DF1!GEN responds to the following commands. Most are the
same as the cassette form generator's.

CONSTANT
JUSTIFY
LINK
NEW
OLD
OS
OUT
PROGRAM
REQUIRE
REVISE
SEl-1I-CONSTANT
TYPE

CHAPTER 1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM 1-3

When "OUT" is entered I if field programs are assigned, the
entire {objectprogram] file will .be attached to the [outputform]
file. If the [outputform] name is different from the <inputform>
name, the [outputform] name should appear on thecomma~d line.
Thus, when "OLD" is entered, <inputform> willbe readi and when
"OUT" is entered, the form in memory will be written to
[output form] •

Entering "OUT" automatically reloads the DOS if the form
generation is successful. The DOS·may be reloaded at any time
wi thout wr i ting the form by .. enter ing "OS".

1.5 Form Testing and Data Entry

To test the completed form, or to perform data entry, enter:

DF11 <SYSNAMnn>[,datafile] [imode]

The interpreter identifies itself with the sign-on message:

DF11 INTERPRETER 2.n - ddmmmyy

The'default extension of the data file is "TXT". If no
[datafl1eJ name is entered, the default data file name is
"SYSNAl1/TXT". Form "SYSNAMnn" is loaded, the [datafile] is opened.

The initial data entry mode may be specified on the qommand
line, by placing the first character of the mode ("S" for STARTi
"A" for ADDi "F" for FINDi and "M" for MODIFY) after a semicolon.
The commands aVailable in the DF11 interpreter are:

ADD
BACKSPACE
CONTIIWE
DATA
END
FIND
HELP
LOAD
MODIFY
OS
RE~HND

START

The "STAR'r", "ADD", "MODIFY", or "FIND ,. command s ini tia te
interpreter action. Execution is the same as for the cassette
interpreter wi th the exception that entering "END" both terminates
the data file and reloads the DOS·

1-4 DISKETTE: DATA ENTRY SYSTEM

The "OS" command reloads the DOS without terminating the data
file.

TO maximize the space available for data entry, the data file
should be crea ted on a dr i ve other than the dr i ve conta ining the
DFll system's diskette.

1.6 Using DFll with CHAIN

The DOS CHAIN command is a versa ti I e system for provid ing a
control sequence which is virtually operator proof. It can also be
useful during development for repeated re-compilation, form
generation and test sequences. See the chapter on CHAIN in the DOS
User's Guide for CHAIN commands and parameters.

All programs in the DFll system may be accessed via a CHAIN
file. However, not all types of operator input may be provided by
that file. For the form generator, all commands maybe entered but
none of the characters required by the various commands may be
entered. For the compiler and print utility, all keyin requ~sts,
answers to questions~ headings, etc., may be supplie~ by the chain
file. No keyins may be provided for the interpreter (other than
the ini tia 1 command line); however, when da ta entry is compl ete,
the "OS" command causes the CHAIN to resume·

The following is and example of a developmental CHAIN file
for a system called BNK:

DFI1CLvIP BHKOl
OF llCMP BNK02 i LC
TELLER TERtJIINAL REPORT - #DATE#
OF llGEN BNKO 1
OLD
OUT
DFllGEN BNK02
OLD
OUT
OFll BNKiS

CHAPTER 1. A ~UICK GUIDE TO THE DISKETTE DATAFORM SYSTEM 1-5

The following is an example of a CHAIN file for data entry:

11* PLACE DATA DISKE'TTE IN DRIVE 1 - PRESS DISPLAY KEY
DFll BNK, :DRliS
LIST BNKiLX
TRANSACTION REGISTER #DATE#
SORT BNK,BNK/SRTil-10
LIST BNK/SRT;LX
SORTED TRANSACTION REGISTER #DATE#
II
IITRANSl"lI SS ION PHASE
II
DPDMP
690-7543

1 '.
BNK/TXT
**
* *
IITRANSMISSION COMPLETE

1.7 DF11 Compatibility

DF11 runs in a 16k cassetteless 1100 with a minimum of 1
diskette drive. It has all features of the DATAFORM 2 interpreter
and form generator, and selected features of the configurator.
DATAFORM 2 form images may be converted to DF11 form images, and
DFll form images may be converted to DATAFORM 2 form images by
using the separately released program DFCONV. DATAFORM 2 source
code programs (with no assembler routines or EQU's to interpreter
data or routines) are compatible with DF11 source code programs
with the sole exc~ption of the CHAIN statements.

The following changes have been made to DATAFORM 2 to produce
DFll, and are due mainly to the use of a new media and a larger
machine:

1. User space has beE!ii increased to 5k.
2. Forms load from diskette in less than a second.
3. The extended interpreter overlays of DATAFORM 2 are

resident in memory.
4. Data recorQs are packed into and span disk sectors.
5. DF11 is CHAIN compatible.
6. Lo~ical record size has been increased to 249

characters.

1-6 DISKETTE DATA ENTRY SYSTE['4.

The following expansions have been made to the DATAFORM 2 language
to produce the DFIl lan~uage:

1. Variable amount of common·
(R ES ER VE n n)

2. Program control over data entry mode.
(ENTRYMODE, MODIFYMODE)

J. Program controlled end of file on data file.
(WEOF)

4. Program controlled backspace on data file.
(BACKSPACE <LABEL»

5. Program controlled position to end of data file.
(PEOF)

6. Program controlled record deletion.
(DELETE)

7. Program controlled record read.
(READ)

8. Interrogation of current field number.
(FIELDNO <label»

9. Additional form of the MULTIPLY statement.
(MULT)

The followin':J expansions have be~n made to the DATAFORM 2 compiler
to prOduce the OF11 compiler:

1. A variable, rather than a literal, is required for
the CHAIN statement.

2. More label space (255 maximum) is provided.

The following expansions have beEm made to theDATAFORIV1 2 form
generator to produce the DFll form generator:

1. New edit criteria are available via the REQUIRED
pass:

K - keyin-continuous
X - required and keyin-continuous

2. New edit criteria are available via the
JUSTIFY pass:

J - right justify
Z - zero fill
R - right justify and zero fill

3. New edit criteria are available via the TYPE pass:
o - numeric format, minus-overpunch
S - alphabetic format, shift inversion

CHAPTER 1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM 1-7

The following expansions have been made to the DATAFORM 2
interpreter to produce the DF11 int~rpreter:

1. Operator record delete capability (DISPLAY/5) has
been added.

2. 16.8 rather than 12.4 characters of precision are
available in DF11 numeric fields-

3. Initial data entry mode specification may be
placed on the co~mand line.

The DATAFORH 2 configurator has been eliminated, and has been
replaced by a print utility for printing forms (with and without
the assigned edit criteria) and data.

1-8 DISKETTE DATA ENTRY SYSTEM

FORM GENERATION AND TEST
without programs

DF IlGEH ------> form -------> DF 11 --------> da"ta

FORM GENERATION AND TEST
wi th programs

EDIT -----> program ------> DF11CMP -------> program
source object

I
I
I
I

---------------------------------~---~----------I
I
I
I
I
V form

DF11GEN -------> with -------> DFll -------> data
program

CHAPTER 1. A QUICK GUIDE TO THE DISKETTE DATAFORM SYSTEM 1-9

CHAPTER 2. GENERAL DATAFORM TERMS AND CONCEPTS

2.1 What is a FORM?

A "FORLVI" in this User's Guide refers to .the processor's
screen image. This screen image is created by the form generator.
It contains labeling information, defines the length and positions
of "data fields", and reserves space for "keyin only fields".

The amount of data, the number of fields and the amount of
constant informatton in the form image determine exactly how much
memory the form requires.

The form generator may also be used to assign edit criteria
to the data fields. The criteria are assigned fiel~-by-field in
separate passes over the form image.

These criteria include the field type:

Alphabetic
Alphanumeric
Numeric digit
Numeric formatted
Numeric minus-overpunch
Shift key inversion

justification:

Left justified/blank filled
Left justified/zero filled
Right justified/blank fill~d
Right justified/zero filled

entry restrictions:

Fill controlled
Key continuous
Program reserved
Required
Required/fill control lee
Required/key continuous
ReqUired/program reserved

CHAPTER 2. GENERAL DATAFORM TERl-1S AND COnCEPTS 2-1

semi-constant data; consta.nt data.; and automatic form control
(1 inking to other forms).

In atJdi tion , "field prog rams "may be assigned .dur ing form
yeneration. Up to twenty-six unique field programs may be
referenced in a single form. The same field program may be
aSSigned to more than one field.

Specia 1 f unction keys, which are di scussed in the chapter on
the form generator, enable cursor, character, line, and screen
manipulation.

The screen image, basic edit criteria and field programs, if
any, comprise the "form" which is subsequently interpreted by the
DFt1 interpreter.

2.2 What is a FIELD PROGRAM?

If extendededi ting and basic computation are required in a
form, a program written and compiled in the OF1l language is
necessary. This language provides access to the entire data record
(on a character or field ba si s) and def ini tion of working storage
variables, tables, messages, etc. COMMON storage is available to
pass information between forms. The OFt1 language provides the
following editiny capabilities:

Arithmetic
Add
Divide
Multiply
Subtract

Data Manipulation
Align
Convert
Fielo number
Lookup
Move
Set

Data Entry Control
Change
Entrymode
Modifymode
Reset

2-2 DISKETTE DATA ENTRY SYSTEM

Data Checking
In range
In table
Not in range
Not in table
Null
Retry

Check Digits
CklO
Ck~l

Comparisons
'Equal

Branching

Output

Grea ter than
Greater than or equal
Less than
Le ss than o'r equal
Not equal

Again
Call
Chain
Go to
Hext
Return
Store

Backspace
Beep
Close
Delete
End
Formshow
Message
Peof
Read
Show
Heof
vvr i te

CHAPTER 2. GENERAL DATAFORM TERil1S AND CONCEPTS 2-3

Data Definition
Common
Data

Da ta Buffers

Equ
Field
Redefine
Reserve
vJork

Input
Output

The fiela programs may be assigned to particular fields in a
pass of the form generator. When the form is written out,' the
reI oca tabl e prog ram wi 11 be converted to "absol ute" code and
written to the form file.

During data entry, the field program is executed after the
operator enters data into the field where the program assignment
was made. The program is executed even if the operator bypasses
the field.

2.3 User Space and How It's Allocated

Hhen a new form is being created, there are 5000 characters
of memory, called "user space", available. This "space", however,
encompasses all the following:

Common storage
Field programs (if required)
Form image
Keyin data buffer
vlr i ting da ta buf fer

The form generator inoicates the amount of free space as soon
as the form image has been defined. ~ i1g~ ~~QgraID~ and COMMQN
~.tm~ 1!l.lJst 1ll in .t.hg ~mn.sU..ning frgg '§Q~g.

2-4 DISKETTE DATA ENTRY SYSTEM

2.4 Some Data Entry Features

In conjunction with the DISPLAY key, the number pad keys can
provide the operator with the following functions:

Backspace field
Backspace record
Delete record
Form data duplication
Form da ta era se
Load next form
Return to Read record
Monitor
vvr i te record

If semi':"contant data is defined inthe form, it may be
accepted or overwritten by the data entry operator. Constant data
cannot be overwritten, and is placed in the data record as is.

Forms may be loaded in any order under ~ither program or
operator control.

Operator correction of previously generated data may be
accomplished at any time by either a manual, record-by~record, or
an automatic search, with re-writing in-place permitted.

Data may be added to the end of an existing data file
(positioning is automatic).

CHAPTER ')
L. • GENERAL DATAFORt4 TERivIS AND CONCEPTS 2-5

CHAPTER 3. THE FORM GENERATOR

A DF11 "form" is an image displayed on the processor's screen
which contains I.gm .t.,gK!; (explanatory information for the
operator, not to be written to the data file), l.i§ld del.in.ij;.i.Q.O.§
(special characters which define a field to be filled in by the
operator and to be written on the data file) and .k.,gyin eJ2g.~§

(special characteis which define a field to be entered [but not
stored in the data record]). The processor's screen is80
characters wide and 12 lines high and any of the 960 positions on
the sc reen may be used in the form. .

Each form is contained in a file named "SYSNAMrin/DFF" , where
"SYSNAM" is the name of a system of forms which may reference each
other and "nn" is a two digit number assigned to a particular
form. How to load the generator, the filenames required, and
default conditions for filenames required is discussed in 'chapter
one.

3.1 Dat.a Field

A data field is part of the form image which starts at a
vertical bar (I) and .is continued by carets 1-) or underscores
(_). A field steps at the first non-caret or non-underscore
character or the right hand edge of the screen·

Each da ta field causes a' corresponding number of .posi tions to
be reserved in the two data areas (one used for entering and one
used for wr i tiny da ta), and each field generates a six character'
set of edit criteria. Each field defined has a "field number"
corresponding to its relative position in the form (and pointing
to its entry in the edit criteria table). The uppermost, leftmOst
field is number one. Fields are numbered from left to right, line.
ny' i ine, from the top of the form down.

CHAPTER 3. THE FORM 6ENERATOR 3-1

, ,
The construction "I~-~" defines a four character data field;

"I" defines a sing Ie character field and "I II" defines three
adjacent single character fields. The differences between one
3-chara~ter field and three i-character fields are: "

l} Only one set of, edit criteria applies to the
3-chara,cterfielCi whereas each l':"character field "may
be assigned different sets of edit criteria.

2) Since each set of edit criteria takes 6 characters,
the thiee" I-character fields use more us~r space
than the single 3-:-characterf ield.

3) Only one field program may be a ssignedto the
3-character field, whereas each I-character field
may have its own f~eld program.

4) The single'3-character field may be right justified
and/or zero filled.

Fields defined by carets will be "space compressed" in the form
image (BUT NOT IN THE DATA RECORD ,1). When the form is displayed l

space compressed fields will initially appear blank. As the cursor
enters the field, the appropriate number of underscores will be
displayed. Space compressed fields allocate 1ess"user "space" than
non-compressed fields-

Fields defined by underscores are not compressed. The
underscore characters are saved as part of therorln image.

\

Constants ana semi-constants are stored in the fiela
description area of the form image and therefore can be defined
only for fields initially defined by underscores.

The maximum number of characters in a single data field is 80
sin c e the 1::i.sl.b.t M1),Q g.Q.g,g .Q1 .the ~~ ?ti~y § .tsu:m.i1l.a..:tg.§ g 1,ig1.Q
de1.iill..ti.Qn·

3.2 Keyin Only Field

A keyin only f le14, wi th the exception of the initial
character, is defined exactly as is a data field. Keyln only
fields beg in wi th a less than character «) and are continued by
carets or underscores. They may appear anywhere in the form. Keyin
only fields create a six character set of edit criteria like other
fields and thus have a corresponding "field number". However, no
space is reserved for these fields in the data record. A keyin

3-2 DISKETTE DATA ENTRY SYSTEM

Qnly fieLd may be used as a verify field, or as a program message
field. Nothing in a keyin only field ever gets written to the
data file.

3.3 User Space

There is a fixed amount of space available which must contain
the form image, the data input/output .areas, the edit criteria
table, and field programs. This fixed area is called "user space".
There is no li~it(other than the size of the screen) to the
amount of.text one may include in a form. There is, however, a
limit to the number of field definitions (126) .and to the number
of data characters (249) which can be defined. The total user
space available is 5000 characters.

The number of da ta characters, defined in the form image,
reserve. two areas: the keyin data area and· the wri ting data area.
In aduition, each field (whether an actual data field or ~ keyin·
only fiela) defined in the form image requires a six character set
of e(Ht criteria. The characters displayed in the form image, both
la'beling information and field defining characters (excluding
carets} reserve user space. Spaces (and carets) in the form image
are "compressed", i.e., they are represented by a space
compression character followed by the number of. spaces compressed
at that point. One terminator, character is added to each line of
the form image; however, lines which are completely blank require
no space at all.

The amount of user space reserved for the data record, edit
cri teriatable and form image is subtracted from the' total user
space and the amount remaining is indicated at the end of the form
image generation pass.

In addi tion to the data record, edi t criteria table and form
image, user space may be allocated to field programs. The length
of a field program is indicated on the listing and on the screen
at the end 'of program compilation.

When the form is written to the form file, the amount of user
space remaining (or the excess allocated, if any) is displayed on
the screen. If an excess is allocated, either the form or (if
present) the field programs should be revised.

CHAPTER 3. THE FORLvI GENERATOR 3-3

3.4 Form Worksheet

To aid in the design of forI1)s, a "DATAFORM Worksheet". is
ava ilable. This worksheet. provide~ space for designingt~e screen
image and for recording the various edit criteria, constants, etc.
which will have to be assigned at form generation time. The
worksheet also serves as a record, of the form and as a quick
reference for genera tor commands and. function keys. .

A printout of completed forms, similar :1nfonnat to the
worksheet, may be obta ined using the pr int uti! i ty. '

3.5 The NEW Command

To generate a .rurtl form, enter the:

NEW

command to clear th~ screen and enter the image generation mode.

Titles and field definitions may be entered. Pressing the
ENTER key places the cursor at the beginning of the next l~er
line; pressing ENTER without entering text leaves a blank line in
the form.

Addi tional form manipulation is available wi th the DISPLAY
key and the keys on the number pad. When the DISPLAY key is
pressed, the keys in the number pad to the right of the keyboard
(or the regular number keys) become a set of special !ynctiQD k§y§
enabling: the movement of the cursor up, down, left and right; the
insertion and deletion of characters; the deletion of words; the
insertion of lines; dnd the erasure of lines and portions of the
screen·

A k~ becomes g special fUnction k§y it ~ i§ ~~~
Rimy1taneous1y ~D ~pISPLAY ~. That is, holding down the
DISPLAY key while pressing the desired number key turns the number
key into a special fUnction key.

3-4 DISKETTE DATA EHTRY SYSTEt>1

The f.ollowing is a summary of the special function keys:

7'
8
9
4
5
6
1
2
3
o

CANCEL

Character insert
cursor'up
Erase to end of screen
Cursor left
Duplicate character
Cursor right
liJord remove
Cursor down
Line insert
Remove character
Erase to end of line
Return to monitor

Additionally, the CANCEL key eng.:!; the ~AN~EL 1un~':!;.iQn:kSlY)
will erase an entire line.

J.5.1 Repeat Key (KEYBOARD)

'I'he K1::YBOARD key causes a character" (andrnany functions) to
be repei.lteJ. That is, hoIJing down the KEYBOARD key while pressing"
a character causes the character to be repeated as long a~ the '
KEYBOARD key is held down. Also, holding down the DISPLAY .and
KEYBOARD keys while pressing a number pad key causes the special
function key to be repeated.

3.5.2 Cursor Movement Function Keys (2,4,6,8)

There are four cursor movement function keys which are
non-destructive; i.e., they pass 'over characters' on the screen
wi thout era sing them. The. cursor down function key (2) moveS t·he
cursor DOWN, the cursor up fUnction key (8) moves the cursor 'Up,
the cursor right function key (6) moves 'the cursor RIGHT and the
cursor left function key (4) moves the cursor LEFT.

The BACKSPACE key also moves the cursor to the LEFT in a
non-destructive manner. Backspacing will wrap around from column!
of a line to column 80 of the· preceding line, except, of course,
on the top line.

The SPACE bar 15 destructive; i.e., it erases tl~ characters
it passes over, ana moves the cursor to the RIGHT.

All cursor~ovement function keys may be repeated.

CHAPTER 3. THE FORM GENERATOR 3-5

3.5.3 ~haracter Insert FUnction Key (7)

The character insert· function key (7) at the upper left of
the number pad, opens a 'space for character insertion wherever the
cursor is pOSitioned on the screen. This fUnction key may be
repeated. Characters at the right most edge of the screen are
truncated, not wrapped around.

3.5.4 Character RemOvQ Function Key (0)

The charact~r remove function key (0) at the lower left of
the number pad, causes the cha~acter at the cursor to be removed
and the remairiing characters to be concatenated to the left. The
line is blank filled on the rig~t. This function key may .not be
repeated.

3.5.5 Erase Function Keys (1~.,9)

There are several keys available to erase all or part Of the
screen image. The erase function keys may not be repea~ed. The
word remove function key (1) causes a word (that is, a group of
characters edged by spaces) to be removed. The line is
concatenated, and blank filled on the right. The cursor may be
placed anywhere in the word when the word remove function key is
pressed.

The erase to end of line fUnction key (.) causes the line to
be erased froolthe pOSition of the cursor to the right hand edge
of the screen.

'The erase to end of screen function key (9) causes all
characters to be erased from the cursor to the end of the screen,
i.e., through line 12 character 80. This key could be used clear
the entire screen, if the cursor were plaCed in the upper left
corner of the screen.

The CANCEL key (not the CANCEL function key) causes the
entire line that the cursor is on to be erased, and places the
cursor in the first position of the line.

3.5.6 Line Insert.Function Key (3)

The line insert fUnction key (3) causes a blank line to be
inserted gi the line where the cursor is blinking. The line at the
cursor and all lower lines are .t..Q.il~.d .d.Q~ the screen one line.
The twelfth line will disappear. This function key may not be
repeated.

3-6 DISKETTE DATA ENTRY SYSTEM

3.5.7 Duplicate Character Function Key (5)

The dupl icate chara'cter function key (5) causes the character
immediately above the cursor to be duplicated in the current
cursor position. This function key may be repeated. It has no
effect when the cursor is placed on the top line of the screen.

3.5.8 Return to Monitor Function Key (CANCEL)

~ihen the screen has the desired appearance, the return to
moni tor fUnction key (CANCEL) fUnction key returns control to the
generator's monitor. At this point the generator displays the
me ssage:

nnn DATA

mmm BYTES LEfT

indicatLn0 tl~ number of characters in tl~ data record ahd the
number ot characters remaining in the user space. If the number of
characters in tbe <..1J.ta recoru is greater than 249, the generator
displays the message:

L'10RE THAN 249 DATA

The form must immediately be revised to reducE' the number of
characters· If more than 126 fields are defined, the messag~~

'MORE THAN 126 FIELDS

Again,the form must immediately be ,revised to reduce the number
of fields.

I f the combined space required by, the form image, data areas
and sets of edit criteria exceeds the available user space, the
generator displays the message:'

nnn BYTES OVER
)

'1'he torm should be revised to tit the user space avai1able~
Suyyestions on saving space are discussed in an APPENDIX.

CHAPTER 3. THE FORM GENERATOR 3-7

3.6 Assi~nment of idit Criteria
, . ,.

Hhen the form image has been generated, the form is still
only in memory and no edit criteria have been assigned.

Edit criteria may be assigned to each field of a form.
Different kinds ot edit criteria may be assigned in different
"passes" over the fields of a form.· Each type of edit-defining
pass (TYPE, REQUIRED, JUSTIFY, SEMI-CONSTANT, CONSTANT, PROGRAM,
LINK) must bereque stedseparately , and, finally, the form must be
wri tten to the fomi (ile by use of the OUT command. The
eait-defining passes may be requested in any order. Any or all
edit-defining passes may be omitted, and passes may be repeated to
review or to change the criteria.

During each pass, the form is redisplayedwith the cursor at
the first field definition (i. e., the first vertical bar (I) or
less than «) sign). Anyone of the accepted edit criteria for
that pass may be assigned, the field may be bypassed without
changing ot aSSigning the edit criteria (by pressing the ENTER
key), or the edit criteria may be cleared (by pressing the CANCEL
key) •

If a pass is re-executed, the current edit criteria will be
displayed as each field{s reached. If no change is needed,
preSSing the ENTER key proceeds from field to field.

The backspace field function key (B) may be pressed to
pOSition back to the previous field. Hhen the desired edit
criteria have been assigned, the return to monitor function key
(CANCEL) will return control to the monitor.

To request a pass, enter the" name of the pass. Only the first
J letters of the pass need to be entered to initiate the pass.

3.6.1 The TYPE Pass

The TY~E pass is entered to set restrictions on the
characters which may be entered into a field. The acceptable types
tor this pass are discussed below.

If no TYPE edit criteria is assigned to a field, any
character is acceptable in any pOSition of that field.

3-S DISKETTE DATA ENTRY SYSTEM

3.6.1.1 Alphabetic (A)

The alphabetic edit criteria for the TYPE pass CA) indicates
that characters enterea must be uppercase alphabetics (A through
~) or space.

3. 6. 1.2 D i9 it (D)

The digit ed.it criteria for the TYPE pass (D) indicates that
characters entered must be strictly numeric (0-9).

3.6.1.3 rJumeric (N)

The numeric eait criteria for the TYPE pass (N) indicates
that characters entered must be of the set of: digits (0-9),a
decima.l point, or a minus sign (plus signs are ILQ.t allowed).

During data entry, nUmeric fields are checked to contain one
decimal point at most. If a minus ~ign is present, it must be the
left most character. And, no more than sixteen positions are
perwitteu to the left and eight to the right of the de~imal point.

3. 6. 1 • 4 lHxe<J (tvl)

The mixed edit criteria for the TYPE pass (M) indicates that
characters enterea must be of the set of: Alphabetics, space,
digits, decimal point, or minus sign. No other special characters
are alloweu.

3.6.1.5 Numeric Minus-overpunch (0)

The numeric minus-overpunch edit criteria for the TYPE 'pass
(0) ,indicates that the char.acters entered must be in numeric
format. The exception is that the right most'character (not the
left) may "be a minus sign. A minus sign in the rightmost position
causes the character to the left of the minus sign to be
"overpunched" with the minus sign. That is, dnoperator entered
"0-" bec:omes "}"; a "1-" becomes a "J"; a "2-" beComes "K"; etc.

If the field is assigned the "zero fill" edit criteria in the
"JUSTIFY" pass the overpunch will occur in the rightmost
position.

Minus overpunch f.ields should not be assigned the
"fill-control" or "key-continuous" edit criteria in the REQUIRE
pass.

CHAPTER 3. THE FORM GENERATOR 3-9

3.6.1.6 Shift Key Inversion (S)

The shift key inversion edit 'criteria for the TYPE pass (S)
indicates that ,the alphabetic characters entered are not to be
converted' to' capi ta 1 letters unless the shift key is depressed.
That is, the shift key has the same effect as it does ona
standard typewriter keyboard.

3.6. 2 The REQU IRE P,ass,

The REQUIRE pass is entered .to establish that a field may nOt
be bypassed (tabbed past without entering data) during data entry,
or that all characters must be entered, or that the field is not
to be filled by an operator but is to be filled by a field
prog ram.

If no REQUIRE edit criteria is assigned to a field, the ENTER
key must be pressed somewhere in the field to proceed to the next
field.

3.6.2.1 Required (R)

The required edit criteria tor the REQUIRE pass (R) indicates
that a field is required. This means that dUring data entry, at
least one character must be entered into the field.

3.6.2.2 Fill Controlled (F)

The fill controlled edit criteria for the REQUIRE pass (F)
indicates that a field is to be fill controlled. This means that
during data entry, the field must be completely filled by the
operator.

Fields whose edit criteria for the JUSTIFY pass is J, Z, or R
should not be fill controlled. For these fields, the interpreter
aligns the data after the ENTER key is pressed.

Fill control fields may be bypassed, however, if the ENTER
key is precseu in the first col4mn of the field. The ENTER key is
an unacceptable key 'elsewhere in the fielo.

3-10 DISKETTE DATA ENTRY SYSTEM

3.b.2.3 Required and Fill Controllea (B)

The requirea ana fill controlled edit criteria for the
REQUIRE pass (8) indicates that a field isbo~h required (R) and
fill controlled (F). The ENTER key is an unacceptable key.

3.6.2.4 Program Reserved (PI

'I'he program reserved euit criteria for the REQUIRE pass (P)
indicates that a fiela will be filled by a field program. No
operator keyin is permitted in this field.

This edit criteria may also be set on a keyin only field to
reserve it as an alternate message display area.

3~6~2.S Required and Program Reserved (S)

The required ana program reserved edit criteria for the
REQUIRE pass (5) indicates that a field is to be both program
reserved (PI and required (R). This will prevent writing of the
data record if data has not been entered into the program reserved
tlela by a fielJ program.

3.6.2.6 Keyin Continuous (K)

The keyin continuous edit criteria for the REQUIRE pass (K)
indicates that a field may be terminated either by pressing the
ENTER key or by entering the last character (as in fill controlled
fields).

3.6.2.1 Requireu and Keyin Continuous (X)

The required and keyin continuous edit criteria for the
REQUIRE pass (X) indi~ates that a field is both required and keyin
continuous.

3.6.3 The JUSTIFY Pass

. The JUSTIFY pass is entered to either right justify (rather
that the default left justify) or zero fill (rather than the
default blank fill) a field.

CHAPTER 3. THE FOR~ GENERATOR]-11

3.6.3.1 Right Justify (J)

The right justifyed.i,t criteria for the JUSTIFY pass (J)
indicates that a field isto -be right justified and btank filled
to the left. .

3.6.3.2 Zero Fill (Z)

The zero fill edit criteria ~or the JUSTIFY pass (Z)
indicates that a field is to be zero filled on the right.

3.6.3.3 Right Justify and Zero Fill (R)

The right justify and zero fill edit criteria for the JUSTIFY
pass (R) indicates that a field is to be right justified and zero
filled on the left.

3.6.4 The SElIIJ.I-CONSTAN'I' and CONSTANT Passes

The S£HI.,..CONSTANT or CONSTANT pass is ent~red to set
semi-constants or constants into afield in a form. Semi-constants
and constants are characters set- into a data field in the form
image. Dur ing data entry the operator has the option to .ru;:~ .Q1:

QY~X-1ttl.:t~ gg.:t..g .§.§..t QY .tM~I.";~STANT ~.§; whereas, data set
by t·he CONSTANT pass automatically becomes part of the data record
and cannot 12~ ~~ by the operator. Both commands cause the
form to be displayed with the Cursor in the first field capable of
accepting constant or semi-constant information.

Semi-constants and constants may only be set in fields
initially defined at image generation time by underscores.

In the CONSTANT pass, the SPACE bar does not set constant
spaces into the field but permits movement to the desired position
within the data field. If constant spaces are required, the caret
key (-) must be us~d. In additio~, neither constant nor
semi-constant underscores (_), vertical bars (I) or carets (-) can
be set within the field. The CANCEL key will clear any constant
field previously set. The BACKSPACE key pOSitions back one
character and erases the last character entered~

Duriny the CONSTANT pass, no editing is performed on
constants entered. Unaceptable constants will cause the
interpreter to ngn~ b~gQ1ng during data entry. Unacceptable
semi-constants will be displayed. This feature may be useful for
presen tiny vrompting informa tion to the opera tor, e. g., a da te
field may have the unacceptable semi-constant "YYMMDD" set to

3.,..12 DISKETTE DATA ENTRY SYSTElIIJ.

guide the operator.

Also, an entire form of constant data should not be prepared;
at least one position must be left for the operator - so that the
form may be viewed and/or written to the data file. All-constant
forms (or forms with no field s) wi 11 ca use the interpreter to hang
,~.ll,~,Klng at data entry time.

Partial semi-constants at the beginning or in the middle of a
field are m~aningless since the operator will have to enter data
over them to enter the rema inder of the fie 10.

Once semi-constants or constants have been set, they will
always appear when the form is displayed (e.g. f during the TYPE or
REQUIRE pass)~ Semi-constants and constants are not destroyed by
assigning edit criteria dUring other passes.

Semi-constants and constants should be cleared before
executing the REVISE command since their presence will change the
field definitions.

3.6.5 The PROGRAH Pa ss

The PROGRAM pass is entered to assign field program names to
field~. Field programs are written in the OF11 language, which is
aiscusSed in a later chapter. Each program is identified by a
single alphabetic character (A - Z). A program is assigned to a
field by eritering the appropriate program letter in any field
wh~re a special processing program will be written.

The same fielc.l program may be assigned to several fields,
e.g., a year ana month range check could be used for any date
field. Up to twenty-six unique field programs may be assigned in
one form.

3.6~6 The LINK Pass

The LINK pass is entered to assign a "link" to another form
so that the operator need never be concern'ed with a fOrm number.
Each form in a DFl1 system may have a pointer, called a "link", to
the next form to be used. This pointer must be defined at form
g~neration tim~. Form links should be planned carefully so that
forms are accessed in a manner most convenient to the operator.

NOTE: LINKed fo rms must have the same SYSNALvl.

A form link may be either of two types: a manual' link or an
automatic link. The operator must press a special function key to

CHAPTER 3. THE FORM GEI~ERATOR 3-13

\

load a manual linked form a;iter the data record has been written.
An auto linked form is automatically loaded whenever a data record
is written.

When the LINK pa ss is entered, the me ssage:

NEXT FORM nnn:

will appear (where nnn is the number of the current linked form in
octal, initially 000). The current linkage information,may be
viewed by entering the LINK pass and then simply pressing the
ENTER key to leave the val ue unchanged. '

3.6.6.1 Setting a Manual Link

To set a manual link, enter the number of the form (followed
by the ENTER key) which is to be displayed when the operator
presses the form loaa function key.

3.6.6.2 Setting an Auto Link

One data entry transaction may require several DATAFORM
"forms i ', e.g. forms 1, 2 and 3 (PAYO!, PAY02 and PAYO) may make
up one payroll transaction. In order to f ill in form 1 once, then
form 2 once, 'then form 3, the operator would have to use the write
function (to,write out the data) and then the form load function
(to load the next form).

To facilitate use of multiple page forms (i.e. sets of forms
to be completed in sequence and then reused), the next form links
can be set at form generation time to auto-load a new form

'whenever data is written.

To set an a uto-l ink precede the form number wi th a minus
sign. Thus, when generating form one in the multi-page example
above, enter "-2" as the auto 1 ink for form 1; enter "-3" as the
auto link for form two; and "-1" as the auto link for form 3
(which makes form three wrap around to form one).

3.6.6.3 Clearing a Link

To clear a form link, enter a zero when the "NEXT FORM"
messaye is displayed.

3-14 DISKETTE DATA ENTRY SYSTEM

J.t The OUT Command

Q.1J.r.ing, 1.Il~ ~ n..t ,trSi iQ rm 9..§!l~XgJ i ont i mSi ..tDSitQIJ] i§ QnlYin
m~mQ.rY· To record the fonn and its associat~d edit criteria in the
form tile, enter the:

OUT

cOlflmanu. If no errors have been detectea (e.g. too many fields,
too lony a c.iata record), the form will be written. If programs
have Deen specif ieu, the program file (see chapter 1 for a
discussion of where the program file name originates) will be
opened and searched for all referenced programs. If the file or
any of the programs are missing, an error message is displaye~ and
the form is written ~ithout field programs.

At the completion of the form wri ting process, the generator
displays either the message:

PROGRAM BASE ADDRESS mmmm

nnn BYTES LEFT

anJ reloaus the DOS or the ~essage:

nnn BYTES OVER

This messaye means that the form image plus the data recoid plus
the field program is too large to be contained in available user
spac;e. Ei ther the form or th~ field programs must be ·revised to.
fit into the user space. All numbers incluc.iing the address
uisplayed here are decimal.

When the new form has been written, it may be .tested by·
runniny DFll specifying the newly Created form.

'j.b The REVISE Command

If an error in the form image is discovered after the image
has been yenerated, the:

REVISE

command places the generator in the image generation mode wi th the
current form intact. All Sigi t £I:itexig g!:Si .~l~g.red which means
that ill.l 2Q~~~.~ DgVe ..tQ DSi TSi-Sixe£;:.IJ..t,§.Q after the form has been
revised.

CHAPTER J. THE FORt\/(GENERATOR 3-15

If the form is not in, memory, the OLD command must be entered
before the REVISE command to load the old form into memory.

NOTE: If constants had already b~en set into the form, it is be$t
to enter the cor~srrANT pass and ~I Cyli..ng .t.h§ CANCEI.t .k.iY)gll .
~1l..§..tgn..t fields (since constants destroy the field definition
characters) ~~ enter1.ng ~ RIDlISE .Q.Q!!lll1g,n,g.

3.9 The OLD Command

Once a form has been recorded it may be retrieved and
modified. The:

OLD

command loads the form into memory. Any pass of the generator may
be executed; however, note that the REVISE command will clear all
edit criteria.

If the fiela 'programs associated with a form have changed,
simply enter OLD, to reload the form, and OUT, to attach the new
version of the programs. Any time a form is read via the OLD
command, all field p'rograms required must be re-attached to the
form.

3.10 The OS Comm~nd

The:

OS

command reloads the DOS without writing the current form in memory
to the form file.

3-16 DISKETTE DATA EHTRY SYSTEM.

TYPE REQ
assign a ssi':1n
eait edit
criteria criteria

GENERAT ING A NEVI FORM

NEW
make fom image

JUS
assign
edit
criteria

S EM I
define
semi-
constant

I
I
I
I
I
I

OUT

CON
define
constants

write form to form file

PRO
assign
prog ram
letters

CHAPTER 3. THE FORl'l GENERATOR

LINK
set
manual
or auto
link

3-17

CHAPTER 4. THE COMPILER

The DF11 interpreter provides field editing capabiliti~s oh a
character-for-character basis. Field programs written in the OFll
language provide much greater field editing capabilities. The DFl!
language is a high level programming language, similar in
structure to OATABUS and other high level languages. A field
program can perform almost any kind of field (and even character)
manipulation: check digit, range, and table checks: complete
arithmetic processing; inter-form communication; complex data
record movement; code-set conversions; etc.

The OF11 language is concise, yet powerful. The basic
ingredients of the language are, as in any programming language,
statements which describe data (called ~specification" statements
in the DF 11 1 an<j uage), and eta temen ts which man ipul a te da ta
(calleo "executable" statements).

4 • 1 L d 1112 l S

Any DF11 statement may have a label, and some IDy.§j;; have a
label. A "label l

' oegins in column one and consists of up to eight·
alphanumeric characters (actually, the label may consist of any
number of alphanumeric characters, although all characters after
the first eight dre ignored).

Labels have three uses: first, to name data items; second, to
provide a means for branching and subroutine calls wi thin a
DATAFORM program; and third, to name field programs (that is, to
dssociate program code segments to specific fields in the fo~m
image) .

At most 246 labels may be defined in a OF!1 compilation.

The following are examples of acceptable labels:

A
2765
FIELD17
LABELSTATE['lENT (truncated to LABELSTA)

CHAPTER 4. THE COMPILER 4-1

4 . 2 Fie I d, P rog t am Name s

The form generator uses a label called a "field program name"
to associate a specific starting address of a OF11 program segment
with a specific field of a form. A field program name is a label
which is terminated by a star (or asterisk) ~*", and there are no
blanks between the label and the star •. Since,only the first
character of a field program' name is passed to the form genera tor,
it is pointless (and probably could be confusing) to name field
programs with labels which are longer than one character. In
addition, the generator requires an alphabetiC field program name.
It is important to note that the compiler does not check for
duplicate field program names; if there are duplicates, it passes
both to the generator.

The following are examples of program names:

4.3 Spaces

E*
z*

The OF1! compiler isa' "free-form" compiler -- that is, the
space character () is by and large ignored by the compiler.
Hul tiple spaces are treated as a sing Ie' space, and a sing Ie space
is ignored except as a field 'separator. S~aces may be included as
deSired to improve readability.

4.4 Comments

Comments, too, are ignored by the OF11 compiler.

There are two kinds of comments -- comments which appear on a
code line after the code; and comments which appear on a line by
themselves. Comment lines must begin with a period (.) or a plus
(+) in colUmn 1. If a listing is printed, a comment that begins
with a plus causes a page to be ejected on the printer and the
comment line to be printed on the top line of the next page of the
1 i sting.

4.5 Specification Statements

As mentioned earlier, specification statements are statements
which describe data. The DFl1 language contains: the DATA
statement (used to access the output data record); the HORK
statement (used for data storage within a single form); the
RESERVE statement (used to change the size of COMMON); the COMMON

4-2 DISKETTE DATA ENTRY SYSTEM

statement (used for data communication bet~§en forms); the EQU
statement (used to describe absolute values); the REDEFINE
statement (used to associate a label with a previously defined
label); and the FIELD statement (used to describe fields of the
sc reen imag e fo rm) .

Every specification statement has associatea with it an "item
length". The item length is the number of characters which make up
an individual item of that statement. The iteln length of each
specification statement below is the length of the entire
statement, unless otherwise indicated.

4.5.1 DATA

The DATA statement refers to specific columns of the OUTPUT
data record. The general format of the DATA statement is:

<label> DA TA < n> < , m>

where "n" and "m" are dec imal numbers in the range 1-249. The.
number lin" refers to ail int tia I col umn of the OUTPUT data record I.

and the number "m" refers to a terminal col umn of the OUTPUT da ta
record~ Thaitem length asSociated with the DATA statement is:
(M~n)+l~ The columns defined by the DATA statement do not
necessarily correspond to specific fields of the form. Areas may
be redefined. The colUmns defined by a DATA statement may be:

1) Iaentical to fields on the form.
2) A sub-grouping of a large field into smaller fields.
J) A combination of smaller fields into a larger field •
4) An overla'pping of fields on the form.

The following syntax restrictions apply to the DATA statement:

1) "n" and"m" must both be greater than zero but less
than 250.

2) "m" must be g rea ter than or equa I to tin II •

3) The DATA sta tement must have a label.

Examples of the DATA statement:

NAME DATA 1, 29 multiple column field
rDCODE DATA 30,30 sing Ie column field
AMOUNT DATA 31,39
DOLLARS DATA 31, 37 Sub-group of larger
CENTS DATA 38,39 field

CHAPTER 4. THE COMPILER 4-3

4.5.2 WORK

The WORK. statement is used to reserve spacE! within afield
program. Space reserved may beuninitialized, or may' contain. ASCII
or octal constants (or tables). . "

To simply resE!rv~ uninitializE!d l3pace within a field program,
the following format of thE! WORK statement is used:

<label> ~WRK <n>

where <n> is a decimal number in't:he range 1...,249. The area to
which <label> refers has an item lelfgth of <n>.

Working storage may contain ASCII characters. The characters
are enclosed in double quotation imarks,' as in the followin~:
example:

WORDS WORK "PRE-DEFINED CHARACTERS"

A spec ial forc ing charactex, (#) may be used to .. force" the
character immediately following it to be included in the string;
by using this character, the doub~e quotation mark and the forcing
character may appear in the characterstrlng: ..

NICKNAr~E

NUMBER1
WORK "I AI~ #"SHORTY#"."
WORK "I AM ## 1."

Each WORK statement that contains constants generates a code
segment. Normally, every constant working storage segment is
terminated with an additional, special end-of~table character, an
octal zero. This character is included in the over-all length of
the working storage segment, but is not incl uded in the item
length. To conserve memory, it is possible to suppress the special
end-of-table character in a constant working storage segment by
following the last item of the working storage segment with a
semicolon, as in the following examples:

HORK1
HORI<2

ltWRK "DATA"
HQRK "DATA";

'I'he first example will generate the following five octal
characters: 01D4,0101,0124,0101,000. The second will generate the
following four octal characters: 0104,0+01,0124,0101. The item
length of both statements above is four.

Horking storage may contain tables as well. The item length of the

4-4 DISKETTE DATA ENTRY SYSTEM

table is determined by the length of the first item in double
quotation marks. Each i tern in the vlORK statement table must be the
same length. Individual items are separated bya comma.

In the fall owing examples:

TABLE1
TABLE2
TABLE3
TABLE4

HORK "1"," 2" , .. 3" , "4" , "5" , II 6 ..
vl/ORK "12","34","56"
HORK "123","456"
~WRK "123456 II

all of the working storage tables have the same .table length (six
characters plus one special end-of-table character for a total .
table length of seven), but the individual item lengths are
respectively 1, 2, 3, and 6.

v.Jorking storage i terns may be cant inued on more than one line
by using a colon, as in this example:

CONTINUE WORK "123456","789012":
"345678":
"901234"

Working storage may contain octal constants. The first octal
constant (and Qnly the first) is prefixed by the alphabetic letter
"0". Each octal constant generates only one character of working
storage. An octal constant may consist of any number of octal
digits; however, only the least significa~t eight bits are placed
in the octal character. Octal constants may be separated from one
another by a comma,· and may be continued· from one line to another
ny use of the colori. Octal constants, like other constants, are
terminated with an octal zero; a semicolon after the last constant
will suppress the zero. The item length of an octal constant work
area is one. Octal constants and ASCII character strings may not
be inixed in the same WORK statement; WORK statements· are either
acta 1 or ASCI I.

The following are examples of octal vvORK statements:

OCTAL1 HORK 015;
OCTAL2 WORK 015,16,17,20
OCTAL3 HORK 015,16,17,20:

25,26,27,30:
35

OCTAL4 WORK 0107

CHAPTER 4. THE COMPILER 4-5

The following syntax restrictions· apply to the WORK statement:

1) The WORK statement must have a label.
2) If the WORK statement defines a table, all items in

the table must be of the same length.
3) A comment may appear on a WORKsta tement if the

comment is preceeded by a period.
4} If the WORK statement merely reserves space (i. e.,

does not contain any constants) I the amount of space
reserved must be in the range 1-249.

4.5.3 COMMON

The COMMON statement is used to aSSign labels and reserve
space t,/ithin the COMMON block. COMl~ON statements are identical
syntactically to WORK statements. Their main difference is one of
function. The COMMON area is used for transferal of information
.oetween . forms, or for the saving of informa tion used .in pre form
only, al though mul tiple fo·rms are loaded. The forma t of ~he COMMON
sta tement is:

[label J COMMON <n>

The following example could be used to pass a six character total
from one form to anot'her:

TOTAL COMMON 6

It is important for every program using information saved
through COMI'-10N to have the same relative locations of areas inside
the COMMON block. References to COMMON data in second and
subsequent form's programs must be in the same order. A dummy
COMMON statement, such as:

DUMMY COMMON 6

should be used to s'kip over 6 unused characters inside the COMMON
block, if those characters are not referenced by the cuirent form,
but are referenced by another form.

4-6 DISKETTE DATA ENTRY SYSTEM

The following syn tax restrict ions apply to the CQ[-,1t10LJ sta temen t:

1) A l~bel is not required on a COMMON ~tatement.
2) The maximum total length of the CQ[-!J[10N .block is 100·

characters unless the length is changed by the
RESERVE statement.

3) A comment may appear on a COMl'-lON statement if the
comment is preceeded by a period.

4.5.4 RESERVE

The RESERVE statement i~ used to change the size of the
CO[1MON block. The. COMMON block is initially set to 100
characters. The format of the RESERVE statements is:

RESERVE <n>

where <n> is the size of the COMMON block to be reserved. The
RESERVE statements must appear before all COMMON statements.

NOTE: a 11 forms in a system should have the same size C0l1['!JON
block, to prevent any destruction of COMMON data.

4.5.5 EQU

The EQU statement is used to associate an octal address value
with a label. Following the EQU is a string of octal digits,
denoting an absolute octal address. The initial character of the
string need not be a zero, although a zero will serve as a
reminder that the string is octal .rather than dec ima 1.

Previously assembled assembly (as. distinct from DFl1)
language programs may be referenced by using the EQU st~tement to
define a label, and then transferring control to that label (see
later sections of this manual for transfer of control statements
and for assembly language interfacing).

The following are examples of the EQU statement:

8K
12K

EQU 02 0000
EQU 30000

CHAPTER 4. THE COMPILER 4-7

4.5.6 REDEFINE

The REDEFINE statement is used to associate a new label with
an elsewhere defined label.

The general format of the REDEFINE statement is:

<labe12> REDEFINE <labell><,n><,m>

The value "n-l" is a'dded to the previously defined initial value
for <labell> and becomes the initial value of <labe12>. The item
length of <labell> is ignored, and the number "m" becomes the item
length for <labe12>.

For example, suppose a table i,s defined as follows:

TABLEI WORK "123456789012"
. .

The item length of TABLEI. is 12~ Then consider:

TABLE2
TABLE3
TABLE4
TABLE!)
TABLE6

REDEFINE TABLE1,1,6
REDEFINE TABLE1,1,4
REDEFINE TABLE1,l,3
REDEFINE TABLE!' 3,2
REDEFINE TABLE1,7,1

The same memory locations are lire-grouped" under different labels,
so that the effect is the same as:

TABLE2
TABLE3
TABLE4
TABLES
TABLE6

WORK "123456","789012"
WORK "1234","5678","9012"
WORK "123"," 4 56" , It 7 8 9" , "012"
WORK "34","56","78","90","12"
WORK .. 7" , It 8" , It 9" , "0·' , "I II , If 2 "

The REDEFINE statement may redefine WORK and COMMON statements
(and the pre-defined label INPUT).

4-8 I?ISKETTE DATA ENTRY SYSTEM

The following syntax restrictions apply to the REDEFINE statement:

4.5.7 FIELD

1) Both <n> and <m> must be in the range 1-249.
2) The REDEFINE statement must have a label.
3) The field following <m> may be used as a comment

field.
4) The REDEFIHE statement should immediately follow the

label that is being redefined (i.e., <label1> in the
yenera 1 fo rma t of the REDEFINE above). The REDEFINE
statement is not flagged in error if it appears
el~ewhere, but erroneous values may be generated if
the REDEFINE statement does not immediately follow
the label that is being redefined.

The FIELD statement is usee to reference the OUTPUT fields of
the displayed form. The field reference may be absolute or
relative to the current field. The absolute field reference is
used to reference ~2~~ltl£ fields of the form.

The format of the absolute FIELD statement is:

<label> FIELD <n>·

where lin" is a decimal number in the range 1-126.

The relative field reference is used to reference an offset
(either positive or negative) of the ~urr.§nt field.

The forma t of the re la ti ve field sta tement .is:

<label> . FIELD <sign><n>

where <sign> is e.ither a U+" or a "_" and "n" is a decimal number.
in the range 1-126.

The following are examples of the FIELD statement:

FIELD?
NEXTFLD
LASTFLD

FIELD "I
FIELD +1
FIELD -1

The laDel appearing on a FIELD statement may be referenced in any
type of arithmetic or conditional statement, as in the following
example:

ADD LASTFLD TO INPUT GIVING NEXTFLD

CHAPTER 4. THE COMPILER 4-9

4.6 Executable Statements
. . .

Executable statements arethos~stqt.:une'n~sconcerning: 1)'
transfers of information; 2) arithmetic; 3} compCirfsons;·q
output; 5) transfer.s of control; and 6 lcur-rent! ielda ssi.gnment.

4.6.1 Transfers of Information

Da ta is moved from one location to another using one of six
,possible statements: ALIGN, CONVERT, FIELONO, LOOKUP, MOVE, Or
SET.

4.6.1.1 ALIGN

The ALIGN statement format· is:

[label] ALIGN <fielo1> TO cfield2>

The ALIGN first checks both <fieldl> and <field2> for the presence
ofa deCimal point. If none eXists, it is assumed to beat the
rightmost edge of the field. After determining the decimal point,
<fieldl> is moved to'<fieid2>, with decimai poinfs aligned. In
<i1eld2>, either truncation or zero-fill or both may occur.

In the following example, the source field and the destination
field (both before and after the ALIGN) are shown:

FIELDl

MOVEIT

FIELD2

10.1
10.1
10.1
1. 234
1.234
12.34

ALIGN FIELD! TO FtELD2

FIELD2
(before)
0000.
00.00
0.000
0000.
00.00
00000

(after)
001.0.
10.10
0.100
OOO!.
01..23
00012

NOTE: If <field2> is in the data area, the decimal format may be
initialized by setting (our inq form generation) semi-constant
zeros with a dec imal point in the appropriate position.

4-10 DISKETTE DATA ENTRY SYSTEM

4.6.1.2 CONVERT

The CONVERT statement format is:

[label] CONVERT <fieldl> BY <tablel> AND <table2> GIVING <field2>

The CONVERT statement will try to find <field1> in <table1>. The
length of <field1> is used for the search. The corresponding entry
in <table2> is moved to <field2>.

Given the following specification statements:

TABLEl
TABLE2

'VJORK "MA" I "NY", "KS", "[vIT" , "TX"
vWRK "BOSTON", "ALBANY" , "TOPEKA" :

"HELENA" , "AUSTIH"

ana the following executable sta tement:

CONVERT FIELD1 BY TABLEl AND TABLE2 GIVING FIELD2

the tollowiny will be the contents of FIELD2 if the contents of
FIELOl are as indicated:

FIELDl
TX
MA ..
KS

FIELD2
AUSTIN
BOSTON
TOPEKA

The item length of < table2> is used to determine the posi tion of
the corresponding element and the length of the move from <table2>
to <field2> (the item length of <field2>is also checked);
therefore, each separate item in <table2> should be enclosed in
double quotation marks.

If the item is not found in <table1>, no movement of data takes
place.

The CONVEkT statement should be used when the table has gaps, or
is rctndomly ordered.

4.tJ.l.3 FIELlJl'JO

The FIELDNO statements places the currect field. number (in
ASCII) in the area specified by <labeI2>. The format for the
FIELDNO statement is:

Tlabell] FIELDNO <labeI2>

CHAPTER 4. THE COMPILER 4-11

4.6.1.4 LOOKUP

The LOOKUP. sta tement forma tis:

{label] LOOKUP <field1> IN<table1~ GIVING <£ie1d2> .

The LOOKUP statement will use <field1> as an index into <table!>·
The item thu~ selected will be moved to <field-'!>. If the index
value is greater than the length of the table, the value moved
into <field2> is indeterminate. The following is an example of the
LOOKUP statement:

TABLE WORK "JAN", "FEB Ii, "MAR" , "APR" , "MAY", "JUN":
"JUL", "AUG", "SEP" ,"OCT", "NOV", "DEC"

LOOKUP NUMBER IN TABLE GIVING NAME

The LOOKUP statement should be used when there are no "gaps" in
the table from which the data mOvement takes pl~te. The LOOKUP
use s < field! > a s an i tern by i tern index into the table, and hence
wi 11g,1\!'H~Y~. f lnu a rna tah, even though 1 t may be outside the range
of t he table (i f t he index is too large).

4.6.1.5 MOVE

The MOVE statement format is:

[label] MOVE <fieldl> TO <field2>

<field1> is moved, left justified, to <field2>. If the length of
<field1> is less than the length of <field2>, <field1>'s length is
useo in the move. Subsequent characters in' <field2> are .D..Q..t
changed; their values are as they were before the MOVE. If the
length of <fie1d2> is less than the length of <field1>, <field2>'s
length is used, meaning that some characters may be truncated (or
lost). An example of the move statement is:

MOVE TOTAL TO WORKl

4.6.1. 6 SET

The SET statement format is:

'[1 abel] SET <field1> TO <field2>

The first character of <field2> is spread throughout <field1>
as for zeroing out a total, or blank filling a message.

4-12 DISKETTE DATA ENTRY SYSTEM

The following example:

STAR
TOTAL
<label>

HORK ,,*,.
~"ORK " 0 0 0 0 0 0 0 0 ..
SET TOTAL TO STAR

would set the entire 8 character TOTAL field to stars. The SET
should not be used to zero a field containing a decimal point
which is to be used as a destination for ALIGN or any arithmetic
statements, since the decimal, too, will be overstored.

4.6.2 Ada, Subtract, Multiply, Divide

The standard arithmetic functions of add, subtract, multiply
ana divide are ~rovided. These statements must be in the following
fOl-mats (specifically, the connectives between <labeIl> and
<labeIL> must not vary):

[laDe 11
[label]

[label]

[label]

ADD <labell> TO <labe12>
SUBTRACT <labellj FROM <labeI2>
(SUBTRACT may be abbreviated SUB)

MuLTIPLY <labell> BY <labeI2>
(MULTIPLY may be abbreviated MUL or MULT
or MPY)
DIVIDE <labeIl> INTO <labe12>
(DIVIDE may be abbreviated DIV)

Alternatively, any of the above four may be modified by appending
the phrase [GIVING label3] to them. The result of this is that the
contents of the first two labels are not affected, but their sum
(difference) product, quotient) appears at the third label rather
than the second.

NOTE: A comment may appear on an arithmatic statement if the
comment is preceded by a period.

The following are examples of arithmetic statements:

ADD INPUT TU SUBTOTAL
SUB DISCOUNT FROM PURCHASE
MULTIPLY PRICE BY QUANTITY
DIVIDE TOTEST INTO TOTSCORE
ADD INPUT TO OLOBAL GIVING NEHBAL
UIV TOTEST INTO SCORE GIVING AVESCORE

If GIVIUG <labeIJ> is appended to an arithmetic statement, an
"ALIGN <laDeI2> TO <labeI3>" is generated prior to the arithmetic
s ta telIlen t.

CHAPTER 4. THE COMPILER 4-1 J

NOTE: Significance may be lost with GIVING <~abe13> .(bafore
computation) if <labe13> has fewer places of sigoiticance than
<labe12>.

The result of any arithmetic will be aligned 1;0 the decimal point
in the result field. Truncation is·perforrned a~ . .l2ili ends of the
field and leading z.gl:~ are ,supplied in non-significant leading
characters. In a field .defined as right justified and blank
filled, performing an "ADD NULL TO <field>" will replace the
leading blanks by zeros.

NOTE: Arithmetic should not be performed on minus overpunch
fields. The result of any arithmetic using minus overpunchfields
is indeterminate.

4.6.3 The IF Statement

The general format of the IF statement is:

[label!] IF <field1><relation><field2> THEN <labe12>

If <relation> is true, control is transfered to <labe12>, which
may be a pre-defined label like STORE. If <relation> is false,
the nextsta tement in tha program is executed. Three types of
relations may be defined:

1) ASCII comparisons (EO', EQU, EQUALi GE, GEQ, GREATER,
GT, GTR, LE, LEO', LESS,LESSTHAN, LT, NE, NEQ,
NOTEQUAL are all acceptable). The characters in
<field1> are compared, from left to right, to the
characters in <field2> (Y§ing ~ ~ length Qi
field1 .:t.Q termin.Q.t.i .t.bsi compare). Differing lengths
do not cause unequal compares; however, if <field1>
is longer than <fie1d2>, the results are
indeterminate. Comparisons of minus overpunch fields
are indeterminate.

2) Table lookup (INR, INRANGE, INT, INTABLE, NIR,
NOTINRANGE, NIT, NOTINTABLE). <field1> is
"looked-up" in the table defined at <field2>. The
item length of <field1> is used.

3) Check digit verification. <field1> is tested for
correctness of check digit with either a mod 10
(CK 1 0) or a mod 11CCK11) check performed, using the
contents of <field2> as a weighting factor. <field1>
should contain the check digit in the least
significant position. <field2> is assumed to be one

4-14 DISKETTE DATA ENTRY SYSTEM

character shorter than <field1>.

the following are examples of the usage of the IF statements:

AMOUNT
ACCOUNTNO ·
f"10NTH
DAY
DAYTABLE
t10NTHTABLE
ZERO
viEIGHT1

FIELD 1
DATA 21,27
DATA 1,2
DATA 3,4
HORK "01","31"
{(YORK "01", "12"
HORK "000000"
WORK "212121"

· Check field1 for strictly positive

A*

B*

IF Al"lOUNT GREATER ZERO THEN STORE
AGAIN

Check for null input

IF NULL EQ INPUT THEN AGAIN

· Check for negative.

C* IF AMOUNT LT ZERO THEN STORE
AGAIN

Check range using table

D* IF DAY NOTINRANGE DAYTABLE THEN AGAIN
IF MONTH NIR MONTHTABLE THEN AGAIN
STORE

· Perform Mod10 check digit validation

E*

4.6.4 Output Control

IF ACCOUNTNO CKI0 WEIGHT1 THEN STORE
AGAIN

The BEEP statement piovides an audib)e tone. The CHAIN
statement is use~ to load another form (in addition to the
auto-loau an~ linkiny-load features of the interpreter). Three
statements are provided for displaying information on the
tnOC8ssor's screen: FORl1SHOH, [IESSAGE, and SHm~. The WRITE, READ,
iH':OF, J3ACKSJ:.lACE, DELETE, and PEOF sta tements are usea to perform.
functions similar to the fUnction keys and commands available to

CHAPTER 4. THE COMPILER 4-15

the operator.

4.6.4.1 BEEP

Hhen the BEEP statement is executed, the processor i ssue.s a
sing Ie BEEP sound. The forma t of the BEEP statement i.s:

[label] BEEP

4.6.4.2 CHAIN

The CHAIN statement loads a specific form. The fprmat of the
CHAIN statement is:

[label] CHAIN <labe12>

where <labeI2> is a work area which contains t~e decimal number of
the form to be loaded (from 01 to 99).A file named "SYSNAMnn!DFF"
is loaded. T'he current data record is not written; however, the
flag indicating data present is cleared. The form is loaded and
control is passed to the interpreter at the first non-constant
field of the new form.

A CHAIN to the form currently in memory reloads that form and
all its programs.

4.6.4.3 FORMSHOW

The FOR£>1SHOH statement causes the .current form to be
redisplayed. All data fields on the screen will be cleared. The
output record is not affected and the current field index is not
changed.

The format of the FORMSHOW statement is:

[label] FORMSHOW

In the following example:

WRITE
FORMS HOW

the last data record written is still in memory; however, it will
be erased from the screen and will appear only as each field is
reached by the operator.

NOTE: The INPUT field is destroyed whe·n the FORMSHOH statement is
executed.

4-16 DISKETTE DATA ENTRY SYSTEM

4.6.4.4 MESSAGE

The MESSAGE statement writes the specified message on the
bottom line of the screen.

The format of the MESSAGE statement is:

[labell] MESSAGE <labe12>

The following is an example of the MESSAGE statement:

ERR HORK "ACCOUNT IS OVERDRAWN"
MESSAGE ERR

The MESSAGE statement always erases the bottom lin,e of the form.
However,the message is only temporary and 'the bottom line of the
form will be restored when the operator writes the data record or
erases the current record.

NOTE: The INPUT field is destroyed when the MESSAGE statement is
executed.

4.t:i.4.5 SHOH

The SHOW statement displays a message in the current field
area of the screen·

The format of the SHOW statement is:

[labell] SHOW Uabe121

If no [labe12] is indicated, the SHOW statement defaults to the
contents of the OUTPUT buffer corresponding to the current field.

The following are examples of the SHOV'v statement:

SHOVJ
or SHOVJ TOTAL

CHAPTER 4. THE COMPILER 4-1 7

The SHOW may be used if computations or table lookup conversions
were made to change the value of the current field, as in the
following example:

CRDRTAB
LSTFLD
CD
MSG
S*

WORK "CREDIT","DEBIT "
FIELD -1
WORK "C", "0"
WORK" ";
CONVERT LS'l'FLD BY CD AND CRDRTAB GIVING MSG
SHOW IvtSG
NEXT

Program "S" is assigned to a keyin only field (i.e. a field which
reserves no data space) which is set to "program reserved" (to
a utoma tically execute the prog ram wi th no opera tor intervention).
The program tests the preceding field and displays a message
corresponding to tha t va 1 ue, for opera tor informa tion.

NOTE: The INPUT field is destroyed when the SHOW statement is
executed.

The WRITE statement writes the data record to the data file.
The format for the WRITE statement is:

[label] HRITE

Control is returned to the next statementil'lthe field program.
The data area ih memory is not clearedj and may be used for
further computation or for auto-duping selected data.

The WEOF statement writes an end of file mark on the data
file. The format for the WEOF statement is:

[label] WEOF

The interpreter read pointers are set to the end of file mark.
The WEor statement places the data file in MODIFYMODE.

4-18 DISKETTE DATA ENTRY SYSTEM

4.b.4.8 READ

The READ statement reads the next record created by the
current form into the. data area. The format for the READ statement
is:

[label] READ

The data file should be in MODIFYMODE for the READ and any
subsequent HRITE statements to be executed properly. If an end of
file mark is read, the data record will contain binary zeros.

4.6.4.9 BACKSPACE

The BACKSPACE statement backspaces the data file. The format
for the BACKSPACE statement is:

[IClbell] BACKSPACE <labeI2>

where <labeI2> is a WORK area whi6h contains the numDer of records
to Ddckspdce. The number is a count of records created by the
current torm. The data file should be in MODIFYMODE for the
ilACKSPACE to ~e executed properly.

4.6.4.10 DELETE

The DELETE statement deletes the current data record. The
format for the DELETE statement is:

[label] DELETE

The entire record is over-written with delete characters (032),
and written to disk.

4.6.4.11 PEOF

The PEOF statement positions the data file to the end of file
mark. The format of the PEOF statement is:

[labe 1] PEOF

t~ile lJointers are set so that the next HRITE operation will
overwrite the end of file mark.

CHAPTER 4. THE COMPILER 4-19

4.6.5 Transfers of Control

The three transfer of program control sta tements are the GOTO
statement, the CALL statement, and the RETURN statement.

4.6.5.1 GOTO

Control is immediately transferred to the label following the
GOTO:

GOTO <labeI1>

For the pre-defined labels, the word GOTO is optional. For
programmer defined labels, it is mandatory.

The following are examples of the GOTO statement:

4.6.5.2 CALL and RETURN

GOTO OVERDRAW
GOTO NEXT
NEXT

A single level of subroutine nestihg is provided with the
CALL and RETURN statements. A program may contain more than one
set of CALL and RETURN statements --but a CALLed subprogram may
not CALL another subprogram.

The statement formats are:

[label] CALL <subprogramname>
RETURN

If a RETURN is executed with no preceeding CALL (in the current
field program) a GOTO NEXT is executed.

4.6.6 CHANGE and RESET

The CHANGE statement is used to transfer the input painter
from the current field (i.e., the sequence number of the field as
it appears in the form) to another field. The new field number or
displacement from the current field number is specified
immediately after the CHANGE statement:

[label] CHANGE [sign]<n>

For example, after the statement:,

4-20 DISKETTE DATA ENTRY SYSTEM

CHANGE +1

is executed, INPUT still contains the entereddatai however., the
current field number has been incremented by one and OD.TPUT now
reflects the position in the data record cor.responding to the new
tiela. After the statement:

CHANGE 1

is executed, however, the current field number has been changed to
the first field in the form, that is, field 1.

\tihen a field program is entered the number of the current field is
saved and may be restored at any time. The:

[label] RESET

statement will reset the field pointer to the field current when
the program was entered.

4.6.7 MODIFYMODE and ENTRYMODE

The l,/10DIFYl'10DE and ENTRYMODE statements a).low the field
program to control the data entry mode. The fO'rmats of these
statements are:

llaDe 1]
[label]

MODIFYMODE
ENTRYI"lODE

The "mod.e" statements place the interpreter in the indicated mode.
The aatafile is not affected in any way~.

nOTE: The statements PEOF and ENTRYMODE when executed in that
order duplicate the monitor's "ADD" command.

4.7 Pre-defined Labels

The nine labels discussed in this section may not be defined
in DFll programs. They have specific meaning to the DFll
interpreter, and are included automatically in every DFll
compilation.

The pre-defined labels INPUT, NULL, OUTPUT, and RETRY refer
to locations within the interpreter. These four labels may be used
as source or destination operands in data movement and comparison
statements. Examples of the use of these labels are given below:

~OVE INPUT TO OUTPUT

CHAPTER 4. THE COMPILER 4-21

IF NUL.L EO INPUT THEN AGAIN
IF RETRY EO NULL T.HEN STORE

The pre-defined labels AGAIN, CLOSE, END, NEXT anq STORE·
cause a transfer of control from the tield program back to the
DFll interpreter. These five labels may be used as the destination
address of comparison or GOTO inst;ructions,as in the example:

B* IF NULL EO INfUT THEN AGAIN
GOTO STORE

or may be referenced by name alone, as in:

C*

0*
E*
F*

ADD INPUT TO TOTAL
STORE
NEXT
CLOSE
END

AGAIN, CLOSE, END, NEXT and ST,oREare means of exiting a field
program. It is important to note that the interpreter does not
place data in the OUTPUT buffer before a field program is called.
It is the responsibility of the field program to do one of three
things:

4.7.1 AGAIN

1) MOVE INPUT TO OUTPUT
2) MOVE <somethingelse> TO OUTPUT (where

<somethingelse> mayor maY not be based upon
INPUT)

3) Exit the field program through the interpreter
label STORE, which will automatically MOVE INPUT TO
OUTPUT and posi tion to the next field in the form.

This label returns control to the interpreter at a point
which indicates an error to the operator and re-requests the
current field. Tha t is, the processor BEEPS and returns the cursor
to the first position of the field.

4.7.2 CLOSr.:

This label returns control to the interpreter at a point
which closes the data file; displays the message:

PROGRAlvi WRITTEN EOF

and reloads the DOS.

4-22 DISKETTE DATA ENTRY SYSTEM

4.7.3 END

This label returns control to the interpreter at the point as
if the operator had pressed the write data function key.

4.7.4 L1PUT

This label designates the contents of the keyin buffer
immediately prior to entering the field program. The data in IHPUT
has not yet been stored in the OUTPUT buffer. It's length is the
length of the current field, and it has been validated according
to the edit criteria in the form itself prior to executing the
field program.

4.7.5 NEXT

This label returns control to the interpreter at the point at
which the current field number is incremented. The cursor is moved
to .the next sequential field. No data is stored.

4.7.6 HULL

This label designates a location in the interpreter which
contains a binary zero. It may be used to determine if the data
file isin normal data entry mode or modify mode; or if data is
present in the OUTPUT record (meaning that this field had been
entered before). The item length of NULL is always less than the
item length of any variable. Therefore, in comparisons, NULL
should be referenced first sinc~ the length of the first operand
is used for the comparison.

4.7.7 OUTPUT

This label designates the contents of the data OUTPUT buffer
for the current field. If no data has been stored, OUTPUT has the
value of binary zero (NULL). The length of OUTPUT is defined at
executioh time by the length of the current field. OUTPUT is
undefined for keyin only fields.

4.7.(j RETRY

This label deSignates a location in the interpreter which
contains a binary flag indicating whether the data file is in
modify or data entry mode. RETRY can be checked by a field program
by comparing RETRY to NULL. If RETRY equals NULL the data file is
in data entry mode.

CHAPTER 4.THi COMPILER 4 -2 3

4.7.9 STORE

This label returns control to the ,interpreter at the point
where the current contents of INPUT is tra~.ferred to the QUtPUT
buffer. That is, exiting a field program through STORE is
equivalent to:

MOVE INPUT TO OUTPUT
NEXT

4.8 Program Generation

Compilation of a program consists of two processes: using the
DOS editor to create a new sour~e program, or edit an existing
program; and using the DFll compiler to compile a new, newly
editea, or old program.

4.8.1 Ed i ting a S9urce Prog ram

The commands of the general purpose editor are discussed in
the chapter on EDIT in the DOS User's Guide. The name of the
program file to be edited/created is indicated on the initial
command line:

EDIT <progra~>;D

where ";D" indicates DFll tabstops.Field Program soUrce file
names should be in the "SYSNAMnn" format. The OF11 compiler and
form generator all use the "SYSNAMnn" convention, and distinguish
among files by their extensions.

4.8.2 Compiling a Source Program

~Jhen the source program has been edi ted, it should be
compiled. This is accomplished by entering:

DFllCMP <sourcefile> (,objectfile] [ioptions]

The compiler displays a sign-on message:

OF11 COMPILER 2.n ~ ddmmmyy

The compiler makes a first pass through the source file preparing
a symbol table. The actual code generatioh and listing production
take place on the second pass over the input file.

4-24 DISKETTE DATA ENTRY SYSTEM '

At the completion of the compilation, some or all of these
messages are displayed on the screen:

STORAGE USED IN DECIMAL: 00000 RELOCATABLE, 00000 COMMON
FIELD PROGRALVlS:

A
'7 ..

END OF CO["1PILATION:
or END OF ~OMPILATION:

00000
00000

NO ERRORS.
n ERRORS.

These are descriptions of the program, telling the length of the
entire program, and listing, in octal, the relocatable starting
address of each of the programs defined. The END me~sage lists the
number of errors in decimal, if any occurred. After this the DOS
is reloaded.. .

Any error messages are automatically displayed on the screen, with
a star indicating the part of the source line in error. The
display may be stopped momentarily by pressing of either the
KEYBOARD or DISPLAY keys. -

4.8.3 Printing a Compilation Listing

The first action of the compiler is to test- whether a servo
or local printer is a part of the compiling system. If either of
them are, the message:

or
LIST ON SERVO PRINTER?
LIST ON LOCAL PRINTER?

is displayed. A response of "y" to this message will result in a
printed listing of the program, as it is compiled. The listing
consists of three parts:

1) The line number.
2) The initial address (either absolute or

relocatable) associated with the
statement line.

3) The line as it was input.

If a listing is to be printed, the message:

CODE TOO?

is displayed. A response of "Y" to this message will place
the code generated for each line (eight characters per
printed line, using as many lines as necessary for the
amount of code generated) on the listing.

CHAPTER 4. THE COMPILER 4-2 S

These listing options may be spec:i,fied in the (;optionsl
field of the DFllCMP command line~ A semico.lon(;) alone
indicates that no listing is to be printed; a semicolon
followed by: an "L" indicates that a listing is to be
printed; a "P" indicates that the printer records are to be
placed in a disk printer-image file (whose, name is
<sourcefile>/PRT) instead 'of on the printer; and a "C"
together with either the "L" or the "P" indicates that
generated code is to be included on the listing.

If a listing or print file is requested, a heading line may
be entered.

4.8.4 The Program File

When compilation is complete, a file of the name
"<sourcefile>/DFP" has been generated which contains the Compiled
code. The compiled code file consists of a header record and both
relocatable and absolute object code records.

The heauer record conta ins the length of the relocatable oJ:)ject
code, and the names and starting addresses of all field programs
in the file.

4.9 Program Execution

4.9.1 Post-process Execution

Field programs are always executed as a "post-process" to
data entry; that is, the program is not executed until the data
has been entered, edited, and accepted by the interpreter. Thus,
alpha-numeric checks, right justification, etc., will already have
been performed on the input.

4.9.2 Operator Tabbing

If the operator chooses to bypass a field which is not
required, INPUT is NULL (binary zero).

If the cursor enters afield .during backward or forward tabbing
and no new data is entered, the data currently in the output
record (which mayor may not be NULL) is passed to the field
program. If, however, new data is keyed in, the new data is
presented to the field program in the INPUT area while previously
entered data is still available in the OUTPUT area. If the
previously entered data is cancelled by the operatorl INPUT is

4-26 DISKETTE DATA ENTRY SYSTEM

HULL.

4.9.3 Pre-process Execution

To execute a f iela prog ram as a "pre-process ", the
pre-process program should be assigned to a preceding field.

4.9.4 Program Reserved Fields

If a fiela is designated as a "proyram reserved" field, data
tor that fiela is to be assigned by a field program. When the
fiela is entered, the field program is executed immediately an~
the area deSignated by INPUT is undefined.

4.9.5 Form Constants

Constants ana semi-constants are set into the OUTPUT area
prior to data entry. However, fields containing constants will be
passed through the basic interpreter as if the constant characters
had been entered. They will be edited and passed to the field
program in the InpUT area. Unnaceptable constants wi 11 cause the
interpreter to hang BEEPing during data entry~

CHAPTER 4. THE COMPILER 4-27

CHAPTER 5. THE INTERPRETER

Data entry using DF11 involves loading the interpreter, then
loading a form, selecting a data entry mode, and finally entering
data into the fields defined by the form. When thed.ata has been
entered on the screen to the operator's sati$faction, and the data
record has been written to the data file (by an operator fUnction
key or a field program instruction) then the same form is .cleared
and redisplayed with only constant and semi-constant data
appearing.

The format for the DF11 command line is:

DFll <SYSNAM [nn] > [,datafile] [;options]

where SYSHALvl is the name of the system of forms. The defa ult form
number value [nnJ is 01. The default Idatafile] name is SYSNAM,
and the default [datafilel extension is TXT. The [options] field
indicates an initial command. The [options] accepted are "s" for
START; "A" for ADD; "f4" for MODIFY; and "Fu for FIND.

The interpreter displays a sign on message:

DF11 INTERPRETER 2.n - ddmmmyy

T he START and ADD commands place the data file in an· "OPEN"
mode. The data file must be placed in the "CLOSED" mode (e.g., by
use of the END command), before another START or ADD command may
be entereu.

The interpreter will respond to the commands discussed below.
A form number (in decimal) is optional in most of these commands;
if it is: omitted, the current form will be assumed. An error may
occur if a form number is required and none is currently in use.

OnlY the tirst letter Ql g command i§ reguiI~; for example,
"START 2" may also be entered as "S 2".

CHAPTER 5. THE INTERPRETER 5-1

DATA ENTR¥FLOW

DFl1 <SYSNAM> [,datafile] [:mode]

Enter
Operator
Commands

Operator
Input

Enter END
Operator Command

SYSNAM/TXT

5-2 DISKETTE DATA ENTRY SYSTEM

5. 1 T he START Command

The:

START [nnl

command displays the following message:

START <filename/ext> ON DRn?

before any data is placed into the file, so that the operator can
verify whether the filename, extension, and drive number are
correct. If the name, extension, and drive are correct, a
response·of "Y" should be entered. The START command causes data
to be placed at the beginning of the data file.

After a response of "Y" to the START me ssage, if a form
number was sp(~cified on the START command; or if a form is
CIHH'ntly in memory; that form is "entered" - i.e., the form is
d i.:;pldYE!cJ with the! cur~~or at the first non-constan.t 1 ielcJ.

After a response of "N" to the START message; or if no form
number was specified on the START command and no form is currently
in memory, the me ssage:

SELECT DATA MODE

is displayed, and control is returned to the interpreter's
monitor.

NOTE: The START command does not check for possibly valid data in
the data file; care must be taken so that a possibly valid data
file is not overwritten.

5.2 The ADD Command

If the data file already exists, the:

ADD lnnl

command positions to the end of any data already in the file. If a
form is already loaded or a form number is specified in the
command I the form wi 11 be entered a fter the da ta file is
positioned. if there is no form in memory, control is returned to
the Interpreter's monitor.

CHAPTER 5. THE INTERPRETER 5-)

5.3 The CONTINUE Command

If the data file is open, and the intEilrpreter is positioned
in the midst of the file, the:

CO NT INUE [nn]

command backspaces the data file one logical record,and reads
forward until an end of file mark is found. Other action is
identical to the ADD commartd.

5.4 The LOAD Command

The first form to be loaded may be specified along wi th the
system name on the interpreter command line, as indicated above.

If no number is supplied at that time, form number one is assumed
(SYSNAMOl). If any other form is to be loaded (replacing any form
currently in memory), the:

LOAD <nn>

command loads form named "SYSNAMnn/PFF" into memory. If a data
file has been opened, the form is entered. If no data file has
been opened, the me ssage:

FILE CLOSED

is displayed and control is returned to the interprete .. r's monitor.

New forms may be loaded without disturbing the position of
the data file. Each data record has associated with it the form
number with which i.t was created so that subsequent modification
can identify data generated by a particular form.

If the form is not on the diskette, the message "BAD FORM"
will appear.

5.5 The DATA Command

'rhe:

DATA

command places the data file in the data entry mode initially, or
returns to the data entry mode from the interpreter' s monitor. If

5-4 DISKETTE DATA ENTRY SYSTEM

no form is in memory or if the data file is not open, an error
message is displayed and control returns to the interpreter's
monitor. Data currently in memory will not be disturbed and will
be displayed whenever the form is re~entered.

5.6 Revising an Existing Data File

5.6.1 The MODIFY Command

Any data record on a DFll generated data file can be accessed
for Ieview QI ~QIrec~ion.The:

[1100 [nn]

command enables the operator to manually access any data record
created by a specified form and to then either bypass or change
that record on the data file. The file is searched for the first
data record created by the current form. Once a record has been
found, the data file is in an "open" mode and may be searched in a
forward direction by pressing the read next record function key
(9), or, from the monitor mode, by entering another MOD command.
To access records already passed over, the rewind function key (7)
rewinds the data file (as does the initial MOD command) ..

If the data file is in the ADD/START mode, the [>100· command
automatically writes an end of file mark on the data file.

During modification, a new form may be loaded (without
disturbing the position of the data file) and that form will
suoseguently be used tor finding data records. Once a record has
oeen found by the MOD command, the contents of all fields will be
displayed in the form. Previously recorded data supercedes form
constan ts, thus, the actua I da ta from the file wi 11 be di splayed,
overlay ing the form's constants (ana chang ing its display, if
uifferent). However, the lQrm'§. constants ~ill be ~ .iri~.Q th.§
data rec.Qra when the field is entered (as they are for new
records).

Data in a field may be changed at this time by entering new
data in the field. Pressing ENTER in the first column of a field
leaves the data unchanged. The edit criteria and field programs
associated with the fields are still in effect, and will be
re-executed.

CHAPTER 5. THE INTERPRETER 5-5

5.6.2 The FIND Command

If unique data in the record to be corrected is known, the:

FIND [nn]

command may be used. Thi s command loads the specified form (if
different from the current form) and displays the form so the
operator may enter characters into any fields to use as a key in
searching the file. All edit criteria are applied to .fields
(except field programs and required edit criteria) when setting up
the rna tch data. .

When the data to be matched has been entered, the operator
must remember to press the ENTER key after data has been entered
in the last field of the search key before pressing the read
record function key (9) to start the search. The interpreter will
search the data file forward looking for the record generated by
the specified form and containing the specified data.

Once the matching data has been found, operation proceeds as
in the MOD command.

If a match is not found, the message:

END OF DATA

appears and control is returned to ~he interpreter's monitor.

The search may be terminated by pressing both the KEYBOARD
and DISPLAY keys simultaneously. The operator may want to stop a
search if, fer example, the wrong system name was speci fied, the
wrong form was specified, or the wrong match data was given for a
FIND. Control will be returned to the interpreter's monitor.

5.6.3 Rewriting Existing Records

Data records are rewritten, in both FIND and MODIFY modes, by
the use of the write record function key (.). If the record was
fetcheq llsing the MOD command, the next data record will
automatically be read and displayed. If the record was fetched by
the FIND command, control is returned to the interpreter's .
monitor.

If no field needs to be changed, the next record can be
fetched by pressiny the read next record function key (9) ; note
that any modifications made will be destroyed by the read

5-6 DISKETTE DATA ENTRY SYSTEM

function. The write record function key (.) must be used to cause
upLia ting ot the recorCi (unless the wri te is executed by the field
proyram, in which case the field assigned the program must be
en tereu) .

S.7 The BACKSPACE Command

In the ADD/START mode, the:

BACI<SPACE

command backspaces the data file one logical record after writing
an end of file mark on the data file and placing the data file in
the MODIFY mode.

In the tliODIFY mode, the BACKSPACE command backspaces twice·
and reads forward once under form number control; that is, if the
record being read wa s not created by the current form, preceding
record:::; wi 11 be read un til a form number rna tch is found.

'['he bJck~)Pdce reconJ t unct ion key (8) cJ 1 so ('xecutE'~j a
llACK:;Pl\CE command.

5.8 The REWIND Command

The:

REWIND

command rewinds the data file and positions :to the first data
record created by the form currently loaded. The data file may not
be rewound if it is in the ADD/START mode.

The rewind data file fUnction key (7) also executes the
REvHIW command.

5.9 The END Command

The:

Elm

command is used to write an end of file mark on the data file.
Swi tching from ADD/START mode to MODIFY mode automa tically wri tes
an end of f 11 e rna rk on the da ta file. The El~D command is rejected
in the MODIFY mode.

CHAPTER 5. THE INTERPRETER 5-7

5.10 The OS Command

The:

os

command is used to terminate exeution of OF11. No file mark is
written on the data file. The DOS is reloaded.

5.11 The HELP Command

The:

HELP

command will display an explantion of interpreter commands and
function keys. The data file must be closed before the HELP
command is accepted. The HELP command overlays the current form
in memory with a standard form whose name .is OF11/0V1.

The OFll/OVl form released with OFll is a description of the
OF11 command and fUnction keys. It may be replaced by a form more
closely related to the data entry system as seen by the operator.

Pressing the load next form function key (1) will lo.ad form
one of the data entry system. Pressing the monitor function key
(4) will return to the interpreter's monitor.

5.12 Data Entry Action

In the data entry mode, data set by a CONSTANT command at
form generation is displayed and the cursor is placed at the first
non-constant position on the form. Data set by the SEMI-CONSTANT
command at form generation time is displayed and the cursor is
placed in the the first position of the field (over the
semi-constant).

If partial constants are set at the right hand end of the
field, data must be entered up to the constants; otherwise, the
constant data may be omitted in the output record.

DUring data'entry, a CLICK sound is made for each accepted
character. If a character fails to pass the TY~E edit criteria for
the field (alpha, numeric or mixed) a BEEP is sounded and the
cursor does not advance.

A BEEP is sounded if a key is pressed and the Interpreter is

5-8 DISKETTE DATA ENTRY SYSTE[iI}

not ready to accept a character because of disk activity.

~ihen enter ing da ta, pressing the ENTER key (or in
keyin-continuous or fill-controlled fields, entering the last
character) causes the field to be further edited (right justified,
zero fil1ea, checked by program, etc.) and, if no errors are
founa, the cursor moves to the next field. After the last field of
a form is entered, the cursor is placed back at the beginning of
the first field awaiting a write record function (.) or other
commandS from the operator.

'v~hen the interpreter detects an error in afield, it places
the cursor at the beg inning of the field just entered and ca uses
the processor to BEEP. The cursor does not advance to the next
field. The unacceptable data is not set in the data area in
memory, but still appears on the screen. If the operator decides
to tab past the field, the last accepted data (blank if none has
been entered) is displayed.

5.13 Interpreter Function Keys

T he ENTER key is used a s a l.Q.r.h'll.Q .t,.§..12 key and the backspace
field fUnction key (3) is used as a backward tab key. Forw@rd
tabbing past required fields is not permitted. Note that
alpha/numeric editing occurs as data is being entered into the
field. Hhen the field is complete, fUrther editing is performed on
numeric and right justified fields to insure compliance with
forma t restrictions (e. g., minus sign must be to the I eft of the
field). Field programs are not executed until all other editing
has been performed successfully.

5.13.1 The Form Data Duplicate Function Key (0)

Once a form has been completed, the data .is transferred to
the OUTPUT buffer from which it is written to the data file. The
OUTPUT buffer is available to the operator for form data
duplication by means of the form data duplicate function key (0).
If no previous record has been written, or i fthe preceding record
was created by a different form, the re.sults of preSSing the form
data duplicate function key (0) are undefined.

~.13.2 The Load Next Form Function Key (1)

The next form (specified by the linkage information in the
current form) will be brought into memory when the load next form
fUnction key (1) is pressed. The current data record must be
recorded, either under program control, or by use of the'wr i te
record function key (.), prior to loading the next form, since

CHAPTER 5. THE INTERPRETER 5-9

pressing the load next form function key (1) does not write the
data record, but instead clears any data in memory-

5.13.3 The Backspace ~ield Function Key (3)

The backspace field function key (3) is used to retreat from
a field to the previous field. No indication is given to field
programs that the backspace field function has been executed.

5.13.4 The Return to Monitor Function Key (4)

Whenever it becomes necessary to execute one of the
interpreter "commands" while entering data into a form, the
operator must press the return to monitor function key (4) to
return control to the interpreter's monitor. Only then may the
command be executed.

5.13.5 The Form Data Erase Function Key (6)

The form data erase function key (6) clears the entire data
area (without writing it to the file) and redisplays the cleared
form. No indication is given to field programs that the Data Erase
function has been executed.

5.13.6 The Rewind Data File Function Key (7)

The rewind data file function key (7) is acceptable only in
MODIFY mode. The rewind data file function key (7) rewinds the
data file and positions to the first data record created by the
currently loaded form.

5.13.7 The Backspace Record Function Key (8)

If the data file is in ADD/START mode, the backspace record
f.unction key (8) causes the interpreter to write an end of file
mark on the data file, place the data file in MODIFY mode, and
display the next preceding data record written using the current
form.

If the data file is in the MODIFY mode, the backspace record
fUnction key (8) caus~s the interpreter to display the next
preceding data record written using the current form.

5-10 DISKETTE DATA ENTRY SYSTEM

\

5.13.8 The Read Record Function Key (9)

The read record function key (9) is acceptable only in MODIFY
mode. It causes the interpreter to search forward in the data file
for the next record that was written by the current form.

5.13.9 The Write Record Function Key (.)

The write record function key (.) is Used to write the
current data record to the data file. If one or more required
fields have not been completed when the write record funct.ion key
(.) is pressed, the processor BEEPs and the cursor is placed at
the first unfilled required field. No data is written to the file.
If all required fields are completed, a data record will be
written to the data file whenever the write record function key
(.) is pres$ed. The data record is written even if only
incomplete data has been entered. If an incomplete data record is
written, it will contain ASCII zeros in all fields defined as zero
filled (right justified, zero filled and left justified, zero'
filled) and spaces (or constants, if any) in all other unfilled
fields.

After the current record has been written to the data file,
the form will be displayed with all data fields cleared to null
values (or to the form constants or semi-constants if any) ready
for re-entry of data from the beginning. If, however, an auto-link
is set when the wr i te record fUnction is executed, the data is
written out and the linked form is automatically loaded and
displayed.

5.14 Logical and Physical Data Records

The lenyth of the data record generated during da taentry is
determined by the combined lengths of all data fielas in the form
(maximum 249 characters). The physical sector containing the data
record also contains a form number (1 binary character biased by
4) and a pointer (1 binary character) which are transparent to all
systems other than DF11 or programs especially designed to access
OF11 data files. This means that editing or sorting or updating
via OA'I'ABUS wi 11 remove the form numbers necessary to access these
recor~s under DF11.

CHAPTER 5. THE INTERPRETER 5-11

The format of a logical record is:

data fields (written to their defined lengths) in the
order they appear on the form (from left to·ri.ghtand
from top to bottom)

logical record termin~tor (015)

Logical records are packed into physical records. A logical
record may span two physical records. The end of physical record
character (003) is followed by pairs of binary numbers,
representing the form number biased by 4 and starting disk buffer
location of all logical rec.ords beginning in the physical record.
Deleted records are entirely overwri tterl' by the delete character
(032), and their form numbers are set to zero. InCompletely
filled data fields are' filled with either spaces or zeros,
depending on the field type edi t criteria. Only 251 characters of
the physical disk sector are used by DFl1.

5.15 Datcl file and OVERFLOW

Approximately 840 sectors are available on a diskette which
contain only an operating system. To insure proper termination in
the event that a diskette becomes full of data, DF11 opens a file
called OVERFLOW/SYS. Six sectors are allocated to this. When the
last available sector on a diskette has been written to the data
file, the following me sage is displayed:

DISKETTE FULL CONTINUE TO NEW DISKETTE (N,Y,
OR FORM NUMBER OF FINAL RECORD)?

If an "N" is entered, the last data record entered is wr i tten to
the diskette, and an end of file mark is written on the data file.
If a form number is entered, the last data record entered is
written to the diskette, and that form is loaded and will be
written to the data file, as a tl~·ailer record, before the end of
file mark. If a "Y" is entered, the last data record entered and
an end of file mark are written to the data file and the message:

REMOVE DISKETTE FROM DRIVE n; PLACE IN ENVELOPE;
ON WHICH DRIVE SHOULD THE FILE BE CONTINUED?

is displayed. When the drive number has been entered, a file
whose name .1s the same as the original data file, but whose
extension is TXn (where Un" is initially 1 and is incremented by 1
for every continuation) is created on that drive.

5-12 DISKETTE DATA ENTRY SYSTEM

An attempt to continue a file whose extension is TX9 will cause
the message:

FILENAME CANNOT BE CONTINUED

to be displayed.

CHAPTER 5. THE INTERPRETER 5-1 J

CHAPTER 6. THE PRINT UTILITY

The print utility program (DF11PRT) may be used to print
ei ther OF 11 data file s or forms. The system name must be provided
on the command line. If the system name includes a form number,
that form will be printed. A parameter may also be placed bn the
command line following a semi-colori. A "0" parameter indicates
the data file associated with the system should be listed; an "A"
parameter causes all forms in the system to be printed.

6.1 Printing Disk Data Files

The data file may be printed either bv the "0" parameter or
by answering "YES" to the question:

DO YOU HANT TO PRINT THE DATA FILE?

Each logical record of the file named SYSNAM/TXT is printedj BO
characters per line, on whichever printer (local or servo) is
available~ If a data record contains an embedded 015, it is
interpreted as carriage return. If a data record contains an
embedded 003, printing of the record will terminate prematurely.

6.2 Printing Forms

All forms associated with the system name will be printed if
the "A" l,Jarameter is placed in command line.· If the form number
is specified along with the system name, that form will be
printed. If no parameter or fonn number is. supplied in the
command line, the opera tor must answer "NO ,. to the me ssage "DO YOU
WANT TO PRINT THE DATA FILE". The message:

FORtI!} NU[V}BER?

will be displayed. The desired form number. should be entered. If
"A" is entered, all forms in the system will be printed.

forms will be printed twice; once as the total imag~ would
appear to the operator and again, one line at a time, followed by
the size of the field, and the TYPE, JUSTIFY, REQUIRED, and
PROGRAM edit criteria for each field.

CHAPTER 6. THE PRIlJT UTILITY 6-1

CHAPTER 7. INFORHATION FOR THE PROGRAMMER

1.1 The Edit Table

7.1.1 Edit Table Format

For e.ach fie ld (Jef ined by a form, a six character set of ed i t
criteria is generated. This entry describes the field in detail,
as follows:

Horizontal position
Vertical positon
Length of field
Position in output record
£di t key
Field program letter

The horizontal position (0-79) indicates the starting column of
the field in the screen image. The vertical po~ition (O~ll)
indicates the line of the SCreen image containing the field. The
information is used to display the field as well as to accesS data
stored in the form image for the field (i. e., constants).

The length of field is the number of cha~acters the operator
may enter -- from 1 to BO. This number is associated at execution
time with the labels INPUT, OUTPUT and with field references in
field programs.

The position in output record is actually an index (0-244)
.into the OUTPUT buffer. If the field is a "keyin"field, i.e.,· no
data space is reserved, the position's value is 0377.

CHAPTER i. INFORr-1ATION FOR THE PROGRAIYWIER 7-1

The edit key is a combination of bits indicating the. edit
criteria set in the generator TYPE and REQUIRED passes- The b~ts
in the edit key have the following meanings:

7 I 6 5 4 3 2/ 1 o I

\ \ \ \ \ \ \ \ __ . Alpha
\ \ \ \ \ \ \ Numeric Field

\ \ \ \ \ \ No Keyin
\ \ \ \ \ Right Jueti f ied

\ \ \ \ _Zero Fill
\ \ \ Numeric J;)igits

\ \ Fill Controlled
\ Required

The alpha and nUmeric digit bits are both set for the "mixed"
field type.

The field program letter is set to binary zero if no field
program is assigned; otherwise, the actual ASCII letter is stored
in thi s character. The number of the last field in the screen
image (the first is zero) is used to determine the length of the
edi t table. In addi tion, there is an 0377 stored after the last
entry in the edit table.

7.1.2 Work Area

During data entry, the six character set of edit criteria for
the current field is moved to a work area in the data page for
ease of referencing. The variables:

COLUMN
LINE
LENGTH
PSN
EDTKEY
USER

contain the six character set of edit criteria. The location
"SAVFLD" contains the current field number.

7-2 DISKETTE DATA ENTRY SYSTEM

7.1.3 Routines to Access the Edit Table

There are several subroutines available to access the set of
edit criteria. uEDTPNT" is the most basic subroutine. This
subroutine uses the value in the C-register to set the HL
registers to the address of the corresponding set of edit
criteria.

"["10VEDT" stores the field number at "SAVFLD" , and moves the
corresponding set of edi t cri teria' to the work area and into the
registers. It also positions the cursor to the field.

"NEXT" and "LAST" use the field number at "SAVFLD" to access
the next or the precedlng field. Both subroutines call "MOVEDT h

•

'/02 S truct ure of t he Form in Memory

'102.1 Pointers

The form is definea by a fixed set of pointers:

Linked form number
Field program pointers
Maximum field number
Edit table pointer
Data-write buffer pointer
Length of data record
Form line pointers

The variable "NEXTF" contains the number of the linked form
(000 if no link, linked form number +2 if a link is set), and the
variable "PAGE3" is the auto-link flag (0 or OJ77).

For each possible field program four characters are reserved
starting at the label "USERA". The four characters are zero if the
corresponding program letter is not present. If a program is
present, whether reterenced or not, the first pair of characters
contains the "base address" to be used for all relative addresses
within the field program. The second pair of characters contains
the starting address of the program. (Note: All addresses are
stored MSB,LSB.) Unresolvea program references contain an octal
377 in the first character.

The set of eUlt criteria is always referenceu via the address
pointer "SEDIT"; the requested field is always checked against the

CHAPTER 7. INFORHATIOU FOR THE PROGRAMHER 7-3

maximum field number, "EEDIT".

7.2.2 Data Buffers

The OUTPUT buffer is always in a fixed position "DATA" at the
end of all form pointers. Its length is defined py the variable
"LDATA". The OUTPUT buffer, to wh.ichthe data is moved prior to
writing, is in a variable position •. It is set at the end of the
data buffer, at a point defined by the length of the data
record+8. The address of the OUTPUT buffer is in "SMATCH". The
OUTPUT buffer is also used when performing FIND operations. The
data contained in the OUTPUT buffer is available to the operator
by means of the form data duplication function key (0).

7.2.3 Form Image

The compressed form is stored beyond the two output buffers
and it is referenced indirectly through the pointers starting at
the label "LINES". If the address in the table of pointers
starting a t. "LINES", corresponding to one of the twelve screen
lines, is zero, the corresponding line is to be blank on the
screen·

7.2.4 Edit Criteria Table

The edi t criteria table is generated beyond the compressed
form. The character immediately after the edit table terminator
(0377) is available for field programs.

7.2.5 Field Programs

When programs are attached to the form, blocks starting at
relocatable addresses are given absolute addresses based at·the
first available space after the form edit table (the program base
address). Non-relocatable records from the field program (e.g.
COMMON)·, are Simply passed through to the form file.

7.3 Subroutines Available in the Interpreter

7.3.1 DOS Facilities Available

The DOS interrupt handler and disk I/O routines are
available. INCHL, DECHL and BLKTFR are also present. See the DOS
User's Guide for descriptions and locations of the various
routines.

7-4 DISKETTE DATA ENTRY SYSTEM

7.3.2 Keyboard Input Routine

The interpreter contains its own keyboard input routine which
has two entry points. When the routine is entered at "KEYIN", the
edit type and length for the current field are applied to the
input. In addition, it is assumed that the corresponding area of
the form image is in the HL registers. This area is checked for
constants. If entered at "KEYIN$", parameters are provided to
permit keyin of twenty characters with no edit restrictions. TM
input .is gl~g~ stored in TEM£.

7.3.3 Display Routine

The display routine also has two entry points, "DSPLY$" and
"DSPLY". If the display routine is entered at "DSPLY",thecursor
position. \-vi 11 be set to the bottom line of the screen and the
screen will be rolled up after the message is displayed. The
message must be terminated by an 015. If the .display routine is
entered at "DSPLY$", the contents of DE: will be used to position
the cursor and no rollup will take place at the end of the
display.

There are two special characters permitted in the display
input message: 023, which may appear only at the beginning of the
message (causing the screen to rollup one lihe); and 011 followed
by a ~ount, which may appear anywhere in the message (indicating
space compression). In addition, binary zeros are converted to
underscores and spaces are not displayed at all (i. e., the cursor
is simply positioned to the right). The message being displayed is
always expanded into TEMP.

The routine called "REWRT" redisplays the form (with no
da ta) .

7.3.4 Form and Data Access Routines

The ·routine "GETADR" uses the contents of the variables "HP"
and "VP" to locate to positions in the form image corresp()nding .to
the current field (this is whete constants and semi-constants are
stored) .

"GETDAT" sets HL to the address in the data buffer
corresponding to the current field. The B-register contains the
length of the field.'

"(IIlOVEDT" uses the value in: the C-register to access the edit
table entrycortespbnding to that field and moves the six

CHAPTER 7. IHFORMATION FOR THE PROGRAMMER ~!-5

character entry to a work area for e~sy referencing- It also saves
the field number in the variable "SAVFLo " .

. 7.3.5 String Arithmetic Package

The string arithmetic package used in OF 11 requires the
following parameters:

HL = destination and field operated on
DE = operator (i.e., divisor)
the length ofHL is in BLEN
the length of DE is in ALEN

The entry point for add is ADo$, for subtract is SUBS, for
divide is DIV$, and for multiply is MUL$.

7.4 Assembly Language Interfacing and Overlays

7.4.1 Program Base Address

When the form generator outputs a form, it displays a
message:

PROGRAM BASE ADDRESS mmmm

The value, mmmm, is the decimal starting address of the form's
programs. This information is of particular interest if assembly
language programs are to be included wi th the form. The technique
for utilizing this information is:

1. Generate a form and record the program base
address.

2. Generate and assemble the assembly language
program set at the program base address.

3. Compute the length (in decimal) of the
assembly language program.

4. Generate and compile the oF11 program with a
labeled WORK statement the same size as the
assembly language program. (It may be
necessary to use two WORK statements since
the maximum reservable amount is 245
characters.)

5., Re,run the form generator. Enter OLD to
retrieve the form and OUT to write the form
with the oF11 program attached.

6. Use the DOS "APP" command to attach the

7-6 DISKETTE DATA ENTRY SYSTEM

assembly language program to the form:

APP <assembly>,<form>,<newform>

This form may now be used by the interpreter.

NOTE: The assembly program and DFll form should always be
appended in this order, since, during conversion to cassette
systems, the extended interpreter and all subsequent code
are replaced by the cassette exiended interpreter.

7.4.2 External References

Facilities are provided in the DF11 language to reference
points outside the program, locations which may be either in the
interpreter itself or in a separately ~ssembled assembly language
program.

The EQU instruction assigns an address to a label which may
t hen be referenceu by any of the branching sta tements in OF 11
(GO'l'O, CALL, etc.). It this facility is used, the assembler return
instruction "RET" will return control to either the statement
after a CALL or to the NEXT point in the interpreter.

7.4.3 Returning to the Interpreter

A table of interpreter entry points is provided so that these
address may be accessed at the same point in future versions:

NEXT$
AGAIN$
STORES
ENDS
WEOFS

EQU
EOU
EOU
EOU
EOU

06400
06403
06406
06411
06414

To return to a field program after being called , the assembly
language should simply return, "RET". Otherwise, a jump to the .
appropriate exit routine will return control to the interpreter~

1.4.4 Interpreter Data Areas

Various interpreter data areas may be needed by the assembly
language progra~s. The variable TEMP is the single item keyin
buffer and it is this area which is accessed when "INPUT" is
referehced in afield program. References to "INPUT" are compiled
as an address of 06000 and a length of zero. At execution time,
the length of the current field is substituted. OUTPUT, compiled

'CHAPTER 7. INFOR["lATION FOR THE PROGRM1MER 7-7

as address zero and length zero, is resolved at. execution time. It
is converted· to the length and address in the da ta buffer of the
current field.

Labels defined in FIELD stateme.nts are compiled with lengths
of one and a special code in theMSB portion of the address. If
the MSB is 0370, the LSB represents an index to. the field table
(i.e. the field number supplied by the programmer, minus one). If
the MSB is 0375, the LSBrepresents a displacement which, at
execution time,· is adqed to the current field number in order to
resol ve the I ength and address informa tion.

NOTE: Referencing a field other than the current field does not
change the number of the current field.

Several variables in the interpreter may be useful to the
program. to access external data, i.e., data in the interpr~ter or
created by an assembly language routine,firstEQUa label, then
REDEFINE the label, assigning it the proper length. For example,
the current fie Id number (in binary, starting at zero), is a.t
location U6141. To test for fielq 5:

CURFLD
CURENT
FLD5
TEST

EQU 6141
REDEFINE CURFLD,l,l
WORK 04
IF CURENT EQUAL FLD5 THEN XXX X

When the operator presses the ENTER key in the first position
of a field, the current data is at INPUT and is then passed to the
field program. The variable at location 06140, SAVNUM, contains a
flag which is 0 if no data was entered, and is non-O if data was
entered.

7.4.5 Loading the Assembly Language Program

Since the format of a form and that of assembly code is the
same, an assembly language overla:r" may be loaded by assigning it a
name ol S~SNAMnn/tiFF and then entering "LOAD nn".

Once the form and program have been tested I there are several
ways to put the system together:

1) The assembly program may be cataloged as a separate
form and be loaded by either the operator or by a
field program.

2) The form and the assembly language program may be
appended together using the facilities of the DOS.

7-8 DISKETTE DATA ENTRY SYSTEM

APPENDIX A. SAMPLE PROGRAMS

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAl"l

<
7
N
R

s

SAMPLE PROGRAM - MOVE

INSIGN REDEFINE
INREST REDEFINE
NXTFLD FIELD
SIGN FIELD
SPACE WORK
MINUS \,WRK

1 __ - 1
6 1

P P

SIGN FROM LEFT END TO RIGHT END

INPUT,l,l
INPUT,2,6
+1
+2
" " . ,
" - ". ,

. INPUT TO KEYIN ONLY FIELD; MOVE

. SIGN AND STORE IN NEXT FIELD

S*

MOVEl

IF
IF
NEXT
["lOVE
LVlOVE
IF
ivIOVE
NEXT

NULL NE INPUT THEN MOVEl .
NULL EQ NXTFLD THEN AGAIN

INREST TO NXTFLD
INSIGN TO SIGN
MINUS EQ INSIGN THEN NEXT
SPACE TO SIGN·

APPENDIX A .'SALi1'PLE PROGRAI"1S A-I

'.

1_-_- I I I_- I = I I
SIZE 6 1 1 6 1 6 1
TYPE 0 P
JUSTIFY R R
REQUIRED P P
PROGRAM K

SAMPLE PROGRAM - ARITHMETIC OPERATIONS ON FIELDS WITH SIGN ON RIGHT

LFT
LFTSIGN
LFTVALU
MID
1>11 OS I GN
MIDVALU
SUM
SUMSIGN
SUMVALU
ADD
SUB
MPY
DIV
SPACE
ZED
VALU!
SIGN!
OP
VALU2
VALU3
SIGN3

K*

ADD!

WORK
REDEFINE
REDEFINE
~mRK

REDEFINE
REDEFINE
~mRK

REDEFINE
REU.E:FINE
~mRK

HORK
WORK
WORK
WORK
WORK
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

MOVE
MOVE
MOVE
MOVE
MOVE
IF
IF
IF
IF
CHANGE
AGAIa
ADD

7;
LFT,!,1
LFT,2,6
7;
MID,!,!
MID,2,6
7:
SUM, 1 ,1
SUM,.2,6
"+
'f_ :
"* . ,
"I . ,
"
"0
!
2
3
4
6
7

INPUT TO OUTPUT
VALU! TO LFTVALU'
SIGNl TO LFTSIGN
VALU2 TO MIDVALU
INPUT TO MIDSIGN
OP EO ADD THEN ADDl
OP EQ SUB THEN SUB!
OP EQ MPY THEN MPY!
OP EQ DIV THEN DIVl
3

MID TO LFT GIVING SUM

A-2 DISKETTE DATA ENTRY SYSTEM

GO TO DONE
SUBl SUB· i'1ID FROM LFT GIVING SUM

GOTO DONE
l'1PY 1 MPY MID BY LFT GIVING SUM

GOTO DONE
DIVl DIV MID INTO LFT GIVING SUi"!
DONE ['10VE SUl4VALU TO VALU3

IF SUMSIGN EO ZED THEN BLANK
i'10VE SUMSIGN TO SIGN3
NEXT

BLANK ["10VE SPACE TO SIGN3
NEXT

APPENDIX A.SAMPLE PROGRAMS A;..3

< 1 __ -
SIZE 6 7
TYPE D
JUSTIFY R
REQUIRED P
PROGRAl~ C

SAMPLE PROGRAM TO COMPUTE CHECK DIGIT (MOD 10)

COMBO VmRK "0000000":
CKWORK REDEFINE COMBO,l,6
CKDIG REDEFINE COMBO,7,1
NXTFLD FIELD +1
ONE WORK "1" ;
WEIGHT WORK "121212";

C· MOVE 1 INPUT TO CKWORI<
SUB CKDIG FROM CI<DIG

Cl IF COMBO CI<10 WEIGHT THEN C2
ADD ONE TO CKDIG
GOTO C1

C2 ["10VE ,COt1BO TO NXTFLD
STORE

A-4 DISKETTE DATA ENTRY SYSTEM

ivIM DD YY JULIAN
I- I- I- I- 1-

SIZE 2 2 2 2 3
TYPE D D D
JUSTIFY R R R
REQUIRED P P
PROGRAl'!i G H J

SAMPLE PROGRAM TO CONVERT TO JULIAN DATE

ADDER

LEAPYR
MONTH
DAY
HOLD
Kl
K02
INDAY.
INMO
JYR
JDAY

G*

H*

J*

WORK

WORK
WORK
HORK
WORK
~{ORK

WORK
FIELD
FIELD
FIELD
FIELD

IF
STORE

IF
.' .STORE

('"

ALIGN
LOOKUP
ADD
MOVE
IF
IF
ADD
STORE

000" , .. 0 31 II , "059" , .. 0901/ , " 120" , "151 ":
181", "212","243", "273", "304", "334"
76","80","84","88","92","96"
01","12"
01", "31"
000" ;

"1" ;
"02" i
:-1
:"2
+1
+2

INPUT NIR MONTH THEN AGAIN

INPUT, NIR DAY THEN AGAIN

INMO TO HOLD
HOLD IN ADDER GIVING"JDAY
INDAY TO JDAY
INPUT TO JYR
INPUT NIT LEAPYR THEN STORE
INMO LE K02 THEN STORE
K1 TO JDAY

ApPENDIX A. SAMPLE PROGRAMS A-5

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

1 _______________ . _________ .
30 .
M

C

SAMPLE PROGRAM ILLUSTRATING CaARACTER CONVERSION

IN1
INMOVE
ALLOUT
WK1
WKMOVE
ASCII

EBCDIC

SINGLE
K29
COUNT
KOO
Kl

C*
C1

REDEFINE
REDEFINE
DATA
REDEFINE
REDEFINE
WORK

WORK

REDEFINE
HORK
WORK
WORK
WORK

MOVE
CONVERT
l-10VE
MOVE
SUB
IF
NEXT

INPUT,l,l
INPUT, 2,29
1, 30
ALLOUT, 30,1
ALLOUT,2,29
"ABCDEFGHIJKL ":
"MNOPQRSTUVWX" :
"YZ01234 5678.9"
0301,302,3D3,304,305,306:
307,310,311,321,3~2,323:
324,325,326,327,]30,331:
342,343,344,345,346,347:
350,351,360,361,362,363:
364,365,366,367,370,371
EBCDIC,l,l .
"29";
"00";
"00" ;
111" ;

K29 TO COUNT
IN1 BY ASCII AND SINGLE GIVING WK1
INMOVE TO INPUT
WKMOVE TO ALLOUT
K1 FROM COUNT
KOO NE COUNT THEN C1

A-6 DISKETTE DATA ENTRY SYSTEM

SHIPPED TO 1- 7----------- SHIPPED FROM 1_-_______ '_
SIZE 15 15
TYPE
JUSTIFY
REQUIRED
PROGRAt1 A A

ADDRESS 1_- ------ --~--
ADDRESS 1_.- -SIZE 15 15

TYPE
JUSTIFY
REQUIRED
PROGRAi'1 A B

DATE I- I- 1- DATE I..:.. L L
SIZE 2 2 2 2 2 2
~'YPE 0 0 D 0 D D
JUSTIFY R R R R R R
REQUIRED
PROGRAi"1 C

SAMPLE PROGf{AM ILLUSTRATING ENTERING FIELDS "OUT OF ORDER"

A* CALL SAVE
CHANGE +1
NEXT

B* CALL SAVE
CHANGE 7
NEXT

C* CALL SAVE
CHANGE 1
NEXT

SAVE MOVE INPUT TO OUTPUT
RETURN

APPENDIX "A~ SAi~PLE PROGRAl"1S A-7

SIZE
TYPE
JUSTIFY
REQUIRED
PROGRAM

THIS IS THE FIELD
1 _____ -.-_
15

R

v

SAMPLE PROGRAM TO ILLUSTRATE MODIFY MODE VERFICATION

ONE WORK tt 1" ;
THREE WORK •• 3" i
HOLD WORK " II • ,
COUNT ~lORK "0" ;

V* IF RETRY EQ NULL THEN STORE
IF INPUT EQ OUTPUT THEN OK
ADD ONE TO COUNT
IF COUNTEQ THREE THEN TRY
MOVE INPUT TO HOLD
AGAIN

TRY IF INPUT NE HOLD THEN ATTEMPT
MOVE INPUT TO OUTPUT

OK SUB COUNT FROM COUNT
NEXT

ATTEMPT SUB COUNT FROM COUNT
AGAIN

A-a DISKETTE DATA ENTRY SYSTEM

1 _____
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAl1 A

1 ___ -
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROG~AM A

1-
SI;ZE 7
TYPE N
.,JUSTIFY R
REQUIRED
PROGRAM A

1 _____ -
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM A

1 ___ -
'SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM A

0000.00
SIZE 7
TYPE
JUSTIFY
REQUIRED P
PROGRAM

SAMPLE PROGRAM - TOTAL ACCUMULATION (FIRST STYLE)

APPENDIXA .. SAMPLE·'PROGRAMS A-9'

TOTAL

A*

FIELD

SUB
ADD
STORE

6

OUTPUT FROM TOTAL
INPUT TO TOTAL

A-l0 DISKETTE DATA ENTRY SYSTEM

1 __ -
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM F

, 1 ------
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAlv). F

1 ____ -

SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAL'1 F

1 __ -

SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM F

0000.00
SIZE 7
TYPE
JUSTIFY
REQUIRED P
PROGRAM

SAMPLE PROGRAM TOTAL ACCUMULATION (SECOND STYLE)

BLANK WORK ,
SUM FIELD 5

F* SUB OUTPUT FROM SUM
ADD INPUT TO SUM
~lOVE INPUT TO OUTPUT

APPENDIX A. SAMPLE PROGRAMS A-ll

MESSAGE
.MESSAGE
NEXT

BLANK
SUM

A-12 DISKETTE DATA ENTRY SYSTEM

1 __ -
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM Z

1 __ -

SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM Y

1 ____

SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM X

1 __ -

SIZE 7
TYPE N
JUSTIFY' R
REQUIRED
PROGRAM ~v

0000.00
SIZE 7
TYPE
JUSTIFY
REQUIRED P
PROGRAM

SAMPLE PROGRAM - TOTAL ACCUMULATION (THIRD STYLE)

ONE FIELD 1
TWO FIELD 2
THREE FIELD 3
FOUR FIELD 4
FIVE FIELD 5

APPENDIX A • SAMPLE PROGRAHS A-13

Z* ADD INPUT TO TWO GIVING FIVE
GO TO EXITl

Y* ADD ONE TO INPUT GI VING FIVE
EXITl ADD THREE TO FIVE

GOTO EXIT2
X* ADD ONE TO TWO GIVING FIVE

ADD INPUT TO FIVE
EXIT2 ADD FOUR TO FIVE

STORE
~J* ADD ONE TO TWO GIVING FIVE

ADD THREE TO FIVE
ADD INPUT TO FIVE
STORE

A-l4 DISKETTE DATA ENTRY SYSTEM

1 ____

SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM P

1 _____

SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAt.l1 Q

i ______
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAM R

1- _____
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAilil S

0000.00
SIZE 7
TYPE·
JUSTIFY
REQUIRED P
PROGRAM

SAMPLE PROGRAM TOTAL ACCUMULATION (FOURTH STYLE}

ONE FIELD 1
THO FIELD 2
THREE FIELD 3
FOUR FIELD 4
FIVE FIELD 5
BLAHK HORK

I

APPENDIX A. SAt4PLE PROGRAtlilS A-iS

, '

P* ADD INPUT TO TWO GIVING FIVE
GOTO EXIT!

Q* ADD ONE TO INPUT GIVING FIVE
EXITl ADD THREE TO FIVE

GOTO EXI'l'2
R* ADD ONE TO TWO GIVING FIVE

AD'D INPUT TO FIVE
EXIT2 ADD'

,.
FOUR TO FIVE

GOTO EXIT3
S* ADD ONE TO TWO GIVING FIVE

ADD THREE TO FIVE
ADD INPUT TO FIVE

EXIT3 ["lOVE INPUT TO OUTPUT
MESSAGE BLANK
MESSAGE FIVE
NEXT

A-16 DISKETTE DATA ENTRY SYSTEM

oouo.oo
SIZE 7
TYPE N
JUSTIFY R .,.
REQUIRED t. !

PROGRAlVJ

0000.0'0
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAivl

0000.00
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRAfvl

0000.00
SIZE 7
TYPE N
JUSTIFY R
REQUIRED
PROGRALvl

0000.00
SIZE 7
TYPE N
JUSTIFY R
REQUIRED R
PROGRAM T

SAl'-1PLE PROGRAM - TOTAL ACCUMULATION, CHECKING AGAINST KEYED IN TOTAL'

FIRST FIELD 1
SECOND FIELD 2
THIRD FIELD 3
FOURTH FIELD 4
TEMP vVORK "0000.00";
SILVER ~JORI< "CORRECT" ;

APPENDIX A. SAMPLE PROGRAMS A-17

GOLD
SHINE

T*

GREEN

WORK
REDEFINE

ADD
ADD
ADD
IF
MOVE
MESSAGE
AGAIN
['10VE
MESSAGE
NEXT

"NOT CORRECT; 0000.00 IS CORRECT"
GOLD,14,7

FIRST TO SECOND GIVING TEMP
THIRD TO TEMP
FOURTH TO TEMP
TEMP EO INPUT THEN GREEN
TEMP TO SHINE
GOLD

INPUT TO OUTPUT
SILVER

A-18 DISKETTE DATA ENTRY SYSTEM

COMlvtAND
CONSTANT
JUSTIFY
LINK
NEW

OLD
OS
OUT
PROGRAlvt

REQUIRE

REVISE
SE[vtI -CONSTANT

TYPE

ADD
BACKSPACE
CONTINUE

DATA
END

F,IND
HELP
LOAD
MODIFY
OS
RE'vVIND
START

APPENDIX B. COMMANDS

SECTION
3.7.3

3.7.5
3.6

·3.10

3.8
3.7.4

3.7.2

3.9
3.7.3

3.7.1

5.1. 2
5.5.1
5.1. 3

5.3
5.6

5.2
5.4.1
5.7
5.5.2
5.1. 1

MEANING
set constants into the form
set filler and justification

. define next form linkage
clear the work area for a
form
load old form from front deck
reload the DOS
write the current form to disk
assign program letters to
fields
set required, fill controlled,
or program reserved edi t
criteria
revise the current form
set semi-constant data. into the
form
set alphabetic or numeric
edit criteria

add to the end of a da ta file
backspace a record on data file.
add to the end of a data file
if the file is already open
switch to data entry mode
write an end of file on the
data file
search for matching data record
display instructions
load the specified form
modify data records
reload the DOS
rewind data file
initialize a data tape

APPENDIX B. COMMANDS B-1

MQQ§

All Data Entry

AP PENDIX C. INTERPRETER FU.NCTION KEYS

K.§y

DISPLAY/4
DISPLAY/.

DISPLAY/3
DISPLAY/5
DISPLAY/6
DISPLAY/1
DISPLAY/O

return to monitor
write data record
or rewrite it
backward tab
delete record
era se form da ta
load next form
dupl icate form
data

Modify and Find Only DISPLAY/7
DISPLAY/8
DISPLAY/9

rewind data file
backspace record
read" record

APPENDIX C. INTERPRETER FUNCTION KEYS C-l

Backspace
Record

S 11r~ tNel'l~t{ I~ Adual

00 [!J
size. t'DII COIfI Ct)PY the

Rewind
Read

~e . ,nd·evt tNt tI1e

Data
fu1p/~.

File
Record

[D 0[~J Erase
Monitor Form

Data

Load 0 IT] IT] Back
Next Field
Form Tab

I ¢ I [] Write
Data I °IIDIS~~

Record Delete (5)

Field Duplicate (0)

DATAFORM Data Entry Functions - Use Display Key
,

DAtA ENTRY COMMANDS VIA NUMERIC KEYBOARD

C-2 DISKETTE DATA ENTRY SYSTEM

APPENDIX D. FORM GENERATOR FUNCTION KEYS

The form 9 enera tor ha s a set of spec ial functions ava ilable
in the image generation mode only. When the DISPLAY key is
pressed, the number pad characters become function keys. The
following fUnctions are available:

7 - character insert
8 - cursor up
9 - erase to end of screen
4 - cursor left
5 - character duplicate
6 - cursor right
1 - wo rd remove
2 - cursor down
J - form expand (downward)
o - character remove

- erase to end of lihe
CANCEL - return to monitor

The BACKSPACE key and the cursor left function key have the
same function. Backspacing from column 1 back to column 80 is
permitted. All cursor movement with the special function keys is
non-destructive.

The CANCEL key erases the entire line the cursor is on and
place s the cursor at the beg inning of the 1 ine.

The KEYBOARD key acts as a repeat key for all characters and
for most fUnction keys.

The CANCEL function key returns to the form generator's
monitor. The ENTER key places the cursor at the beginning of the
next lower line.

APPENDIX D. FORM GENERATOR FUNCTION KEYS D-1

NUMBER PAD OVERLAY

I (8)1 I Cursor l
~ Up t i
I I
I !

• (Sj
: Duplicate:
I I
.Character:
I I

-------..

[2] 0 0 Char-
acter
Insert

.------

[~][~ 0 Curso'r
Left

-- -----

~ 00 Word
Remove

--- ----

I ¢] D

Erase
Frame

Cursor
Right
~ _-_ .. -

----- ... -
Form
Expand

--- ----
Erase
Line

r-t-t11i5 ()Ver/a'l isactus/
size. 'lOti can tJrJp'f

1he f>8ge anti Cllt

out thetr.mplat€t.

I ,
I t , :
_I _'"-__ ----.J

I Character! Cursor I !
I Remove 'l Down' t l
l (lIS)! , (2.) L~, --___ ----f

DATAFORM Form Generator Functions-UseDisplayKey

o I KEYBOARD I
[0 I DI5~AY]

Keyboaro K.ey Causes Repeat Function

FORM GENERATOR COMMANDS VIA NUMERIC KEYBOARD

D-2 DISKETTE DATA ENTRY SYSTEM

APPENDIX E. FORl"! GENERATOR TYPE, JUSTIFY' AND REQUIRE LJIT
CRITERIA

[vJEANING

A Alpha (A - Z and space)
D Digit (0 - 9)
M Mixed alpha and numeric
N Numeric (0 - 9, decimal point, and leading

minus)
o Numeric, minus overpunch
S Shift key inversion

CANCEL Clears edit criteria

Ntimeric tields are limited to 16 pl~ces of significance to
the l('~ft c:lfld II p],.lC('S to the riyht or the decimal point.

JUSTIFY
J
Z
R

REQUIRE

R
F

B
P
S

K
x

li1EANING
Right justify
Zero fill
Zero fill
Right justify

l"lEANING

ReqUired (1 character necessary)
Fill controlled (all characters
necessary)
(ENTER key allowed only to bypass
field)
Both fill. controlled and required
Program reserved (no keyin)
Required and prcigram xeserved
(field is checked prior to writ~)
Keyin continuous
Keyin continuous and required

APPENDIX E. FORM GENERATOR TYPE., JUSTIFY AND REQUIRE EDIT CRITERIA E

APPENDIX F. ALPHABETICAL LISTING OF STATEMENT TYPES

NAME SECTION

ADD 4.6.2
AGAIN 4.7.1
ALIGN 4.6.1.1
BACKSPACE 4.6.4.9
BEEP 4.6.4.1
CALL 4.6.5.2
CHAIN 4.6.4.2
CHANGE 4.6.6
CLOSE 4.7.2
COMMON 4.5.3
CONVERT 4.6.1.2
DATA 4.5. 1
DELETE 4.6.4.10
DIVIDE 4.6.2
END 4.7.3
ENTRYMODE 4.6.7
E;QU 4.5 .• 5
FORIvISHOW 4.6.4.3
FIELD 4.5.7
FIELDNO 4.6.1.3
GOTO 4.6.5.1
IF CK10 4.6.3
IF CK11 4.6.3
IF INT 4.6.3
IF NIT 4.6.3

.IF INR 4.6.3
IF NIR 4.6.3
IF EQ 4.6·.3
IF NE 4.6.3
IF GE 4.6 .. 3
IF LE 4.6.3
IF GREATER 4.6.3
IF LESS 4.6.3
INPUT 4.7.4
LOOKUP 4.6.1.4
l"1ESSAGE 4.6.4.4
MODIFYMODE 4.6.7
MOVE 4.6.1.5
MULTIPLY 4.6.2
NEXT 4.7. 5

APPENDIX F. ALPHABETICAL LISTING OF STATEMENT TYPES F-l

NULL
OUTPUT
PEOF
READ
REDEFINE,
RESERVE
RESET
RETRY
RETURN
SET
SHOW
STORE
SUBTRACT
WEOF
HORK
WRITE

4.7.6
4.7.7
4.6.4.11
4.6.4.8
4.5.6
4.5.4
4.6.6
4.7.8
4.6.5.2
4.6.1.6
4.6.4.5
4.7.9
4.6.2
4.6.4.7
4.5.2
4.6.4.6

F-2 DISKETTE DATA ENTRY SYSTEM

LABEL

TEMP
COLUlvIN
LINE
LENGTH
PSN
EDTKEY
USER
SAVNUH
NEWOLD
FORMNO
CURT
ADFLAG

NEXTF
PAGEJ
BASE

NEXT$
AGAIN$
STORE$
END$
\iVEOF$
ERASES
DELET$
ENTER$

APPENDIX G. INTERPRETER FLAG ADDRESSES

LOCATION

06000
06130
06131
06132
06133
06134
06135
06140
06143
06146
06156
06306

Ob161
06162
06163

06400
06403
06406
06411
06414
06417
06422
06425

DESCRIPTION

, INPUT' buffer
edit entry - horizontal position

vertical position
field length
position in OUTPUT
edit criteria
program letter

number chars entered (0 is ENTER pressed)
I/O mode/status word
current form number +4(in binary)
address of next Dataform instruction
=0 if START, #0 if ADD

Link form number +4 (in binary)
Auto link flag
Program base address

Transfer to NEXT
Transfer to AGAIN
Transfer to STORE
Transfer to END·
Transfer to CLOSE
Erase fUnction key
Delete function key
Re-enter form

APPENDIX G. INTERPRETER FLAG ADDRESSES G-1

APPENDIX H. COMPILER ERROR MESSAGES

NAME REQUIRED

The name of the program source file must be typed in the intial
command line.

BAD LABEL INITIATOR

A character that was neither a decimal point nor a plus nor a
space nor alphanumeric appeared in column 1 of the input line.

INVALID OCTAL

The character string pointed to by the star c6ntains a charactei
which is not in· the set 0-7.

ILLEGAL OPERATOR

Something other than the accepted statement types wa s the first
nonblank symbol after column 1 (or after the label, if one
exists) •

NUMBER FROM 1-249 EXPECTED

The indicated symbol is non-numeric, or if numeric, not in the.
specified range.

COMMA EXPECTED

The symbol after the first number in a DATA statement was nota
comma·

FIELD2 IS LESS THAN FIELDl

In a DATA statement, the second field is less than the first.

LABEL REQUIRED

The DATA, REDEFINE and WORK statements all require a label.

APPENDIX H. COMPILER ERROR MESSAGES H-1

DOUBLE QUOTE ASSUMED

A pre-defined constant (either in WORK or COMMON statements)
should be terminated by a double quotation mark. Tfit is not
there, it is assumed.

ILLEGAL LITERAL \\

In a table, every item enclosed in double quotation marks must be
of equal length. Those that a~e of different length than the
first item are flagged in error.

IMPROPER CONTINUATION

If a COMMOH or WORK table is continued from a line, the following
I ine must ha ve a blank in column one, and the first symbol on the
line must be a double quotation mark. If either of these is not
the case, the continuation is an improper one.

UNDEFINED LABEL

A label is referenced which is neither one of the eight
pre-defined labels, nor defined elsewhere in the program.

MISSPELLED WORD

A specific reserved word -- for example, the TO in an ADD
statement -- has been misspelled. The misspelled wOrd is assumed
to be the one expected, and the next symbol is expected to be a
legal label.

ILLEGAL CONDITION

The connective in an IF statement is not acceptable.

DUPLICATE LABEL

The label beginning the line listed is duplicated previously in
the program (or it is one of the eight pre-defined labels). The
second (and any subsequent) definitions of the label are ignored.

MAXIMUM LABELS REACHED

The maximum number of labels allowed by the compiler is fixed at
246, excluding the pre-defined labels. All labels after this
maximum is reached are ignored.

H-2 DISKETTE DATA ENTRY SYSTEM

COMMON LIMIT EXCEEDED

The COMl.J}ON block may not exceed 100 characters ·or the. RESERVE
amount. Anything defined as COMMON after this length will not be
accepted.

COI".lMONPRECEEDS RESERVE

A RESERVE statement was encountered after a COMMON statement.
Since RESERVE changes the starting address of COMMON, . the RESERVE
statement must come before all COMMON statements.

PROGRAM COUNTER ERROR

The program counter, at the end of pass two does not equal the
program counter at the end of pass one. This is an: internal
compiler error message.

APPENDIX H. COMPILER ERROR MESSAGES H-3

COMMON ~¥STEM ~RRORS

FILE MISSING or FORM MISSING
The form number specified is not present as
SYSNAMnn/DFF.

In the interpreter, this me ssage· may mean tl)a t
the next form specified (in the current form's
link) is not present, or that a command assumes
that there is a form in memory (e.g. DATA) and
none is loaded.

NAME REQUIRED
The initial command line did not include the
system name or form name required by the
program.

ILLEGAL DEVICE SPECIFICATION

BAD NUllIJBER

fB.lN.I UIILITY

The initial command line included a disk drive
speCification which was improperly formatted.

The form number may have been omitted, out of
range (1-99), non-numeric, or, the form
specified is not in the disk directory as
SYSNAMnn/DFF. Note that if the form number is
omitted in a command which optionally accepts
form numbers (e.g. START [n]) the command line
cannot end wi th a space.

BAD SYSTEM NAME

NO PRINTER

The name appearing on the command line was
greater than 6 characters in length.

No printer is conn~~t~~ ~r turned on.

H-4 DISKETTE DATA ENTRY SYSTEM

BAD FORlv]. NAME

BAD FORlVJ.

The form namespecifieu in the command line did
not end with a two digit number.

The form in memory cannot be writte.n out, or
have any pass except REVISE executed, because
bf s6me error condition.

NO FIELDS DEFINED
Every form must contain at least one field
(this field may be a keyin only field).

NO ROOM FOR CONSTANTS
Constants and semiconstants cari only be
assigned to fields of a form which were
initially defined using the underscbre (as
opposed to the caret). This message is
displayed if no tonstants can be assigned.

MORE THAN 126 FIELDS
During image generation more than 126 data
fields were deftned. The form must be revised
before it may be wr i tten out.

MORE THAN 249 DATA

XXX DATA

During image gen~ration more than 249 data
characters were defined. The form must be
revised before it may be written out.

YYY BYTES LEFT
The messages appear immediately after the image
generation phase of form generation. They are
for information only.

YYY BYTES OVER
If this message appears after image generation,
the form image, data area and edit table have
combined to overflow the user space. Something
must be reduced.

PROGRAM BASE ADDRESS XXXXX
This is the decimal Address of the first
location in user space available for program
code.

APPENDIX H. COMPILER ERROR MESSAGES H-5

PROGRAM x MISSING
A program specified in the program pass is not
contained in the program file (or there is no
program file at all).

H-6 DISKETTE DATA ENTRY SYSTEM

Continuous ~eeping during data entry
An unacceptable constant has been defined at
form generation time. The constant must be
reset to conform with the edit criteria before
proceding.

Continuous Clicking during data entry
An all constant form with no keyin field has
been loaded. The form must be corrected before
data entry may proceed.

SELECT DATA MODE
No START, ADD, MOD or FIND command has been
executed.

END OF DATA
End of file has been reached on the data file.

DATA FILE OPEN
An open type operation was attempted before
ending the current data file.

DATA FILE CLOSED

NO FIELDS

A close type operation was attempted before
opening the current data file.

A form wi th no fields has been loaded.

NO LINK SET
The operator attempted to load the linked form
and no link was set.

ILLEGAL OP CODE
An unacceptable DFll op code was encountered
during the ~xecution of a field program.

APPENDIX H. COMPILER ERROR MESSAGES H-7

APPENDIX I. USER SPACE REDUCTION TECHNIQUES

1. Use carets (-) in field definitions (remember they are
compressed in the form image (not the data record) while
underscores (_) are not).

2. Place semi-colons at the end of all non-table, non-rang~
variables to suppress the end-of-table character.

3. Use REDEFINE to create constants or tables which are subsets
of other constants or tables. This technique may also be used
for computation or hold areas if the redefined variables are
not needed at the same time.

4. Use suuroutines to perform repeated operations.

5. Use fiel.d displacement referencing to generalize programs used
with line-items (i.e., where the same set of fields is entered
several times within one form).

6. Use INPUT, OUTPUT and RESET to generalize programs and thus
avoid duplication of code.

7. Keep constants in the form itself (by defining them at form
generation time) instead of using a field program to set them.

8. Combine several fields into one wherever possible (each field
requires 6 additional characters of edit table).

9. Use LOOKUP instead of CONVERT to save one of the tables.

10. Use data areas as work areas whenever possible, thus saving
intermediate hold areas·

11. Execute all programs on last field if possible to save NEXT
and STORE instructions.

12. Avoid CHANGE/SHOW/CHANGE as a series of iristructions. Keep in
mind that fields declared "program reserved" will show up on
the screen in their sequence although the operator cannot
keyin to them.

APPENDIX I. USER SPACE REDUCTION TECHNIQUES I-I

APPENDIX J. SAMPLE FORM GENERATION

Sample Form -- During NEW or REVISE Pass

Form text, data, and keyin only field definitions are set in
either the NEW or REVISE pass. If no constants or
semi-constants are added, this is the way the form text will
look during data entry except that the carets will be
replaced by spaces. .

I~~.------------------------~/

EMPLOYEE PAYROLL RECORP

Name :n_nn __ n __ nn_nnn ___ n_n________ Title Code I- n Dept:-

Dependents: n State Code :n Social Security I--I---- n
Exempt/Nonexempt (0/1) Workman's Compensation (0 .to 9) :
Married/Single (0/1) I Male/Fe~ale (0/1) :

Hourly Rate $:nn_n_ Amount Last Increase $: __ n__ Date Last Increase $: ____ _
Date Hired :----- Date Terminated : __ n_n Date of Birth :-----
State Tax :----- Disability Tax :_nnn_ City Tax :~ ___ n
Insurance :nnnnn Auto Insurance :nn_n_ Life Insurance :-----

Advance: FICA Status (exempt=O, nonexempt:1): Page 27 <

v

APPENDIX J. SAMPLE FORM GENERATION J-l

Sample Form -. During TYPE Pass

The field type edit oriteria are set in the TYPE. pass. Edit
criteria will not be displayed during data entry.

~'----'-'----'-------------------------------_---'----"-7

~-.--.----- -.. --.----........ - .. -----.--."--.-::.-~-----------(/

EMPLOYEE PAYROLL RECORD

Name A Title Code D Dept D
Dependents D State Code D SooialSeourity D D
Exempt/Nonexempt (0/1) D Workman's Compensation (0 to 9) D
Married/Single (0/1) D Male/Female (0/1) D

Hourly Rate $N Amount Last Increase $N Date Last Increase $D
Date Hired D Date Terminated D Date of Birth D
State Tax N Disability Tax N City Tax N
lrisurance N Auto Insuranoe N Life Insurance N

Advance N FICA Status (exempt:O, nonexempt:1) D Page 21 A

v

J-2 DISKETTE DATA ENTRY SYSTEM

Sample Form -- Du~ing JUSTIFY Pass

Right justification and field fill character are set in the
Justify pass. Edit criteria will not be displayed ~uring
data entry.

-----_. __ ..•. _ __ .. __ ._---------_ _._._ ... - .. _._-------_._-----------------.,..

EMPLOYEE PAYROLL RECORD

Name I litle Code J Dept J
Dependents: State Code J Social Security I :
Exempt/Nonexempt (0/1) Workman's Compensation (0 to 9) :
Married/Single (0/1) Male/Female (0/1) :

Hourly Rate $R Amount Last Increase $R Date Last Increase $Z
Date Hired Z Date Terminated Z Date of Birth Z
State Tax R Disability Tax R City Tax R Lnsurance R Auto Insurance R Life Insurance R

___ ~~v a on e,~ __ ' ______ F rcA S ta t "' (e xem pt" O. 0 onexern pb 1) I Page 21 <

APPENDIX J. SAMPLE FORM GENERATION J-3

Sample Form -- During SEMI-CONSTANT Pass .,

Several fields are preset to commonly entered values in the
SEMI-CONSTANT pass. These may be accepted or rejected by the
operator during data entry. The CONSTANT pass looks the
same; however, constants may not be rejected during data
entry.

r--------------------------------------~~

EMPLOYEE PAYROLL RECORD

Name I Htle Code: Dept:
Dependents J State Code l~2 ::'ocial Security I I
Exempt/Nonexempt (0/1) ;'orkman' s Compensation (0 to 9) :
Married/Single (0/1) 0 ~ale/Female (0/1) 1

Hourly Rate $: Amount Last IncreaEe $: Date Last Increase $~
Date Hired : Date Terminated : Date of Birth :
State Tax: Disability Tax : City Tax I
Insurance I Auto Insurance : Life Insurance I

Advance I FICA Status (exempt:O, nonexempt:1) 1 Page 21< ,

l

J-4 DISKETTE DATA ENTRY SYSTEM

Sample Form -- During REQUIRED Pass

Required, fill controlled, and program reserved edit
criteria are set in the REQUIRED pass. Edit criteria will
not be displayed during data ent~y.

I~ --------------------------------'-----'--'----------1"/

EMPLOYEE PAYROLL RECORD

Name R Title CodeB Dept B
Dependents B State Code F Social Security R R
EXemptl Nonexempt (0/1) F Workmal\ 's _ Compensa tion (0 to 9) F
Married/Single (0/1) B Male/Female (0/1) B

Hourly Rate $X Amount Last Increase $X Date Last Increase $F
Date Hired B Date Terminated F Date of Birth F
State Tax X Disability Tax R City Tax R
Insurance Auto Insurance I Life Insurance I

Advance FICA Status (exempt=O, nonexempt= 1) B Page 27 <

L _______________________ ___________________ ----, __ ~_,~-

APPENDIX J. SAMPLE FORM GENERATION J-5

"'"

l!

Sample Form -- During PROGRAM Pass

Field program names are set in the PROGRAM pass. Program "A"
checks range 0-1; "B" checks range 0-9; "D"· checks for Valid
dates; and "X" checks for a "Y" or "N" to determine if
another form should be loaded. Program names will not be
displayed during data entry.

EMPLOYEE PAYROLL RECOf;D

Name I Title Code I Dept I
I I I

Dependents I State Code I Social Security I I I I I

Exempt/Nonexempt (0/1) A Workman's COmpensation (0 to 9)
Married/Single (0/1) A Male/Female (0/1) A

Hourly Rate $1 Amount Last Increase $1 Date Last Increase
Date Hired D Date Terminated D Date of Birth
State Tax I Disabili ty Tax I City Tax I I

Insurance I Auto Insurance I Life Insurance I I

B

$D
D
I
I
I
I

Advance I FICA Status (exempt=O, nonexempt=1) A Page 21 I

J-6 DISKETTE DATA ENTRY SYSTEM

/

X

~

DATAPOINT PRINTING .CRVIC •• 7'

